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Decomposition of abstract linear operators on Banach spaces

K. D. Tsilika?, PhD, Assistant Professor, orcid.org/0000-0002-9213-3120, ktsilika@uth.gr
aUniversity of Thessaly, Hellenic Open University, 78, 28hs Octovriou St., 38333 Volos, Greece

Introduction: The majority of the known decomposition methods for solving boundary value problems (Adomian decomposi-
tion method, natural transform decomposition method, modified Adomian decomposition method, combined Laplace transform —
Adomian decomposition method, and Domain decomposition method) use so-called Adomian polynomials or iterations to get
approximate solutions. To our knowledge, a direct method for obtaining an exact analytical solution is not yet proposed. Purpose:
Developing, in an arbitrary Banach space, a new universal decomposition method for the class of ordinary or partial integro-dif-
ferential equations with non-local and initial boundary conditions in terms of the abstract operator equation B;x = f. Results:
A class of integro-differential equations in a Banach space with non-local and initial boundary conditions in terms of an abstract
operator equation B;x = Ax — SyF(Ax) — Gy@(Ax) = f, x = D(B;)has been studied, where A, A are linear abstract operators, S, G
are vectors and @, F the functional vectors. Usually, A, A are linear ordinary or partial differential operators, and F(Ax), ®(Ax) are
Fredholm integrals. The existence and uniqueness are proved under the assumption that the operator B; has a decomposition of
the form B, = B,B with B and B, being different abstract linear operators of special forms. The proposed decomposition method
is universal anc#7 essentially different from other decomposition methods in the relevant literature. This method can be applied to
either ordinary integro-differential or partial integro-differential equations, providing a unique exact solution in closed analytical
form in a Banach space. The stages of the method are illustrated by numerical examples corresponding to specific problems.
Computer algebra system Mathematica is used to demonstrate the solution outcomes and to assess the effectiveness of the
analysis. Practical relevance: The main advantage of the proposed solution method is that it can be integrated in the interface of
any CAS software in an easy, programing-free way.

Keywords — correct operator, decomposition (factorization) of operators (equations), integro-differential equations, bound-
ary value problems, exact solution.

For citation: Tsilika K. D. Decomposition of abstract linear operators on Banach spaces. Informatsionno-upravliaiushchie sistemy
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Preliminaries and auxiliary results

Integro-differential equations are used in many
problems from science and engineering. The inte-
gro-differential operators describing these prob-
lems are complicated and the exact solution of the
corresponding boundary value problems is a diffi-
cult task. In some cases, the boundary value prob-
lem (BVP) can be transformed into a simpler one in-
volving simpler operators and thus the solution can
be found easier.

The decomposition (factorization) methods were
used in many applications in gas dynamics, trans-
port theory, electromagnetism, quantum physics,
mechanics, hydrodynamics and cosmology [1-14].
In pure mathematics, decomposition (factoriza-
tion) method continues to be a very successful tool
for solving wvariational inequalities, linear and
nonlinear ordinary and partial differential and
Volterra — Fredholm integro-differential equa-
tions as well as systems of partial differential equa-
tions. This method is very important for solving
fuzzy Volterra — Fredholm integral equations,
integro-differential equations of fractional order
and delay differential equations [15—32]. However,
almost all the approaches of the literature listed
above do not give exact solutions in their closed an-
alytical forms and the corresponding problems are

not formulated in terms of abstract operator equa-
tions. Thus, the decomposition methods proposed
and employed in these problems are not universal.
Exact solutions in their analytical form for ab-
stract operator equations in Hilbert and Banach
spaces were obtained by quadratic and biquad-
ratic decompositions of the integro-differential
equations in [33—37]. The universal decomposition
method for the abstract linear operator equation

B,x =A2x — SF(Ax) — GF(A%x) = f, x € D(B,)

was given in [38] on a Hilbert space. We note that
Banach spaces play a central role in functional anal-
ysis and it is important to study the exact solutions
of correct BVPs in the context of Banach spaces.
This work is a natural continuation of [38] to a Ba-
nach space and introduces the universal decompo-
sition method for the similar linear abstract oper-
ator equation

B x=Ax— SyF(Ax) — Gy®(Ax)={, x € D(B,), (1)

where A, A are linear abstract operators; S,, G,
are vectors and ®, F — functional vectors. The de-
composition method proposed here is different than
the well-known decomposition methods (namely the
Adomian decomposition method, the natural trans-

2 /7 VHOOPMALVIOHHO-YNPABASIOLLVE CUCTEMBI
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form decomposition method, modified Adomian de-
composition method, the combined Laplace trans-
form — Adomian decomposition method and do-
main decomposition method). In the relevant liter-
ature, the so-called Adomian polynomials or itera-
tions were used to obtain numerical solutions (see
[1-32]). The class of integro-differential equations
with nonlocal boundary conditions described by an
abstract operator equation is studied in [39], where
all calculations are reproducible in any program of
symbolic calculations and the computer codes in
Mathematica are given.

In the sections that follow we use the following
notations, definitions and statements.

We denote by X a complex Banach space and by
X" the adjoint space of X, i. e. the set of all com-
plex-valued linear and bounded functionals f on X.
We denote by f(x) the value of f on x.

We write D(A) and R(A) for the domain and
the range of the operator A, respectively. An op-
erator A: X — X is called correct if R(A) =X and
the inverse A1 exists and is continuous on X. If
for an operator B, there are two operators B, B
such that B; can be written as a product B, = BB,
then we say that B,B is a decomposition (factori-
zation) of B; and write B; = B,B. An operator By:
X — X is called quadratic (biquadratic) if there
exists an operator B: X — X such that B; = B2,
(B; = B%) and the corresponding decomposition
B, = B?, (B; = B%) is called quadratic (biquadrat-
ic). Recall that the problem Ax = f is called cor-
rect, if the operator A is correct. If x, g; € X and
®, e X', i=1, .., m then we denote by g =(gy, ...,
g,), ®=col(@®;, .., ®, ) and P(x) = col(P,(x), ...,
®, (x)) and we write g € X™, ® € X™. We will de-
note by ®(g) the m x m matrix whose i, j-th entry
®,(g)) is the value of functional @; on element g;.
Note that ®(gC) = ®(g)C, where C is a m x k con-
stant matrix. We will also denote by 0,, and I, the
zero and identity m x m matrices.

Next, we state some useful outcomes. Speci-
fically, Theorem 1 from [40] and Corollary 3.11
from [33].

Theorem 1. Let X, Y and Z be Banach spaces and
Ay X > Y be a correct operator with D(4,) c Z c X.

Further let the vector Gg= g§0), vees ,(,? ) ley™
and the column vector ®@ = col(¢;, ..., ¢,,), where ¢;,

v Oy € Z* and their restrictions on D(A,) are line-
arly independent. Then:
(1) The operator B,: X — X defined by
Byx=Ayx — Gy®(x) = f, D(By) = D(A,), f € X, (2)

is correct if and only if

detLg = det[lm ~®(45"Go )} 0. 3)

(ii) If B, is correct, then for any f € Y, the unique
solution of (2) is given by

x=By'f=Ag'f+ Ag'GoLo'®(40'f). @)

Corollary 1. Let A be a correct operator on a
Banach space X and the components of the vectors
G=(gy, - &), F=col(Fy, ..., F,) are arbitrary ele-
ments of X and X*, respectively. Then the operator
B: X — X defined by

Bx=Ax—- GF(Ax)=f, D(B)=D(A),f€ X (5)
is correct if and only if
detL =det[I,, — F(G)] # 0. (6)

If Bis correct, then the unique solution of (5) for
every f € X is given by

X = Bl1f = AIf + A IGLIF()). (7

Decomposition of abstract linear operators
on a Banach space

In this section we investigate problem (1) where B,
is not quadratic but it can be written as a product of
two other correct operators B, Bi. e. B; = ByB. In this
case the solvability condition and the solution formu-
lation are essentially simpler than in the general case.

We will prove the following theorem using the
technique that was first applied for the case of
Hilbert space in Theorem 2.5 [38], where a given
operator B of the type Byx =Ayx — Gy®@Ayx) =1,
x € D(B,) and an operator A is densely defined. We
use a different operator B, without the assumption
of density of D(A) on X.

Theorem 2. Let X and Z be Banach spaces, ZcX,

the vectors G=(g;, ..., &), Goz(ggo),..., S,?)),
Soz(sgo),...,s,(,?)jeXm, the components of the

vectors F = col(Fy, ..., F,)) and ® = col(®y, ..., D,) be-
long to X* and Z*, respectively, and the operators
B, B, B{: X — X defined by

Byx =Ayx — Gy@(x) = f, D(By) = D(Ay) = Z; (8)

Bx = Ax — GF(Ax) = f, D(B) = D(A); )
Byx = AyAx — SyF(Ax) — G ®(Ax) = f,
D(B,) = D(AyA), (10)

where A, and A are linear correct operators on Xj;
G € D(Ay))™ and the restrictions of ®,, ..., @, on
D(A,) are linearly independent. Then the following
statements are satisfied:

Ne2,2021 N\
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@) If
Sy € R(By)™ and S, = B,G =
=A,G - G,D(G), (11)
then the operator B, can be decomposed in B, = B(B.
(ii) If in addition the components of the vector
F = col(F, ..., F,) are linearly independent elements
of X and since the operator B; can be decomposed
in B, = BB, then (11) is fulfilled.
(iii) If the operator B; can be decomposed in

B, = B;B then B, is correct if and only if the opera-
tors B, and B are correct which means that

detLg = det[Im —(D(A(}lGO):' +0 and

detL =det[I,, — F(G)] = 0. 12)
(iv) If the operator B, has the decomposition in

B, = BB and is correct, then the unique solution of
(10) is

x=Blf=A" 451+ A’lGL’lF(A(]l f) +
+[A‘1A51G0 + 4761 F( 456Gy )}LI)I(D(AO‘If). 13)

Proof: (i) Taking into account that G € D(4,)™
and (8)—(10) we get

D(B,B) = {x € D(B): Bx € D(B)} =
={x € D(A): Ax - GF(Ax) € D(4,)} =
={x € D(A): Ax € D(A)} = D(A,A) = D(B,).
So D(B,)=D(B,B). Let y=Bx. Then for each

x € D(AyA) and taking into account (8) and (9) we
have

ByBx =Byy=Agy — Gy@(y) =
=Ay[Ax — GF(Ax)] — G, ®(Ax — GF(Ax)) =
=AjAx — A \GF(Ax) — G;®@(Ax) + Gy®(G)F(Ax) =
=AjAx — Gy®(Ax) — [A,G — Gy@(G)]F(Ax) =
=AjAx — B,GF(Ax) — G,®(Ax), (14)
where the relation B,G = A4,G — G,®(G) results nat-
urally from (8) by substituting x = G.

By comparing (14) with (10), it is easy to verify
that B;x = B,Bx for each x € D(A,4) if a vector S
satisfies (11).

(ii) Let the operator B; can be decomposed in

B, = B,B. Then by comparing (14) with (10) we ob-
tain

(ByG — Sy)F(Ax) = 0. (15)

Because of the correctness of operators A, Ajand
the linear independence of Fy, ..., F,, there exists a
system x, ..., x,, € D(A3A) such that F(4yxy) =1,
where x;=(x;, .., x,,). By substituting x =x, in-
to (15) we get S,=B,G. Hence S, e R(B,)" and
Sy =ByG=4,G — G,D(G).

(iii) Let the operator B, be defined by (10) where
S, =B,G. Then equation (10) can be equivalently
represented as a matrix equation:

F( 45" Ag Ax|
Byjx=AgAx—(ByG, Gy) =f, (16)
(4" g Ax)
or
B,=Ax— GF (Ax)=f, D(B))=D(A), (17)
where
A=AAy G =(ByG, Gy);
F=col(f“, (i)), f“(Ax)— I:‘(Ax) )
O (Ax)
then

Cf)( 711))
Notice that the operator A =AA, is correct, be-

cause of A and A, are correct operators, and the

functional vector F is bounded, since the vectors
F,® are bounded as a superposition of a bounded
functlonal F, ® respectively and a bounded operator
AO Then we apply Corollary 1. By this corollary
the operator Bj is correct if and only if

detL; = det[lgm —F(G)J =

~ I, 0,) [F(ByG) F(Gy)
_detl[Om Im]{é(BZG) Cf)(GZ)]

L, ~F(G-45'Go®(G)| —F(A{;IGO)
=det =
~0(G-45'Go®(G)) 1, -0(45 1G0)
I, -F(G ( IGO)(D(G —F(AOIGO)

=det #0.

~0(G)+ (D(A{]lGO )cp(G) I, - d)(A(}lGO)

According to properties of determinants of ma-
trices (Remark 1, [34]), taking L, in the last formu-
lation from above and adding ®(G) times the second
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column of L, to its first column, the determinant is
unchanged. We then get

I, -F(G) —F(45'Go)
detL; =det . =
0, I, —c1>(A5 GO)
= det[T,, —F(G)]det[lm ~®( 45" Gy )} _
=detLydetL=0.

So we proved that the operator B, is correct if
and only if (12) is fulfilled.

(iv) Let x € D(AyA) and ByBx = f. Then by Theorem
1 (ii) since B,;, B are correct operators, we obtain

Bx=By'f=Ay'f+ A51G0L51®(A51f),
x=B"1 (Aglf N AglGOL;)lq)(AO‘lf)).

In the last equation we denote by g=Ag'f+
+A51G0L51c1>(A51 f). Following strictly Corollary 1
(i), we get

x=Blg=Ag+ AT'GLF(g)=
_al (A(}lf + 45" Golg'®( 45 lf)) ;
; A‘lGL‘lF(Ao‘l f + 45" GoLg @ 45" f)) -
= A7l A + A7 A5 GoLg @ 4g"F )+
+AteL! [F(Aglf) + F(A51G0 )L;}cp(Aa lf)}

which implies (13). Thus, the theorem has been
proved.
The next theorem is useful for applications.
Theorem 3. Let X and Z be Banach spac-

es, ZcX the vectors Goz(ggo),..., {0)}
(0) (0)

So 2(31 yeees 8
vectors F = col(Fy, ..., F,) and ®=col(®;, ..., ®,)
belong to X* and Z*, respectively, the operators
A, A, B;: X — X and the operator B, defined by

€ X™, the components of the

B,x =Ax — SyF(Ax) — Gy®(Ax) =f, x € D(B,), (18)

where A is a correct m-order differential opera-
tor and A is a n-order differential operator, m < n.
Then the next statements are fulfilled:

(i) If there exist a bijective n — m order differen-
tial operator A,: X — X and the vector G such that

A=Ay, D(B) = D(AA), D(A) = Z;  (19)
detLg = det[lm -®( 456Gy )} £0;  (20)

G=A4g'So + 49" GoLg'@( 4980 ), (2D)

and the restrictions of @, ..., @, are linearly inde-
pendent on D(A,), then the operator B; is decom-
posed in B; = BB, where B, B are given by (8), (9),
respectively, the operator B, is constructed by the
triple of elements A, ®, G, from (18)—(20), and the
operator B by the operator A and vector F from (18)
and the vector G from (21).

(ii) If in addition to (i) 4, is correct, then B, is
correct if and only if

detL =det[I,, ~F(G)]=
= det[lm ~F(4g"So )~ F(45"Go )

< Lg'®( 49'S, )} 0, 22)

and the problem (18), (19) has the unique solution
given by (13).

Proof: (i) If a bijective n — m order differential
operator A, and a vector G exist satisfying (19)—
(21), then from (18) we get

Byx = AyAx — S F(Ax) — G,®(Ax) = f,

x € D(AyA). (23)

From (23) we take the operator A and vector

F, whereas from (21) we take a vector G and con-

struct the operator B according to the formula (9).

To determine the operator B, by the formula (8),

we take from (23) the operator A, and the vectors

®, G,. We proved in the previous theorem (i) that

D(B,B) = D(A,A) = D(B,). Substituting (21) into (8)
we obtain

ByG =B, [Ao—lso +451GoL'0( 4578y )} .
A, [Aglso + A5 1GoL'0( 43S, )] -

- GOcD(AO‘lsO + 451 GoLg'®( 49'S, )) -
=Sg + GOL;,lq)(AalsO ) —Gocp(Aalso ) -
- Go®( 45" Go | Lg'®( 45", | =
=Sy + Gy [Im ~®(45"6Gy )} v
* Lo'®( 45"So ) - Go®( 45"So ) = So.

Sy =BG and from (23) for S, = B,G and every
x € D(B,) we get

Byx = AjAx — ByGF(Ax) — G ®(Ax) =
— ByAx — B,GF(Ax) = Bj[Ax — GF(Ax)] = B,Bx.

Thus we obtained the decomposition B; = B,B.
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(iii) If the statement (i) holds, then B; can
be decomposed in B; = B;B. By Theorem 3 (iii),
B, is correct if and only if (12) holds or, tak-
ing into account (20) and (21), if and only if
detL = det[I, — F(G)] # 0, or if and only if (22) is
fulfilled. The last inequality immediately follows
by substitution (21) into detL =det[I, — F(G)].
Since B, is correct and decomposed in B; = BB, by
Theorem 2 (iv), we obtain the unique solution (13).
So, the theorem is proved.

Remark. Usually as a Banach space X we have
Cla, b] or L _(a, b) and as a Banach space Z we have
CHa, blor W) =(a,b), k=1, ..., n.

Numerical examples

Let us examine several examples where our find-
ings are applied and validated (the Mathematica
notebook solving each example is available upon
request).

Example 1. The operator B;: C[0, 1] - C[0, 1]
corresponding to the problem

x”(t)—tzj;t3x’(t)dt—tj;tx’(t)dt =2t +1,
x(0) + x(1) = 0, x'(0) — 2x'(1) = 0 (24)

is correct. The unique solution of problem (24) is
given by the formula

31990t* ~158464t3 — 4518602 +

2502304t - 961985
x(t)= * . (25)
903720

Proof: If we compare equation (24) with equa-
tions (18), (19), it is natural to denote ® = ®; = @,

F-F,=F, Go=2" =Gy, So=s"=5p, 1,-1,
and to take X = C[O0, 1],

Byx(t)= x”(t)—tzj;t x'(t)dt-

—tj;tx’(t)dt:2t+1; (26)

D(B,) = {x(t) € C2[0, 1] : x(0) + x(1) =0,
x'(0) — 2x'(1) = 0% @7
Ax =AjAx = x"(t); (28)

Ax(t) = x'(t), D(A) =
{x(#) € C'[0, 1] : x(0) = —x(D)}; (29)

®(Ax)=[ x'(1)dt, F(Ax)=[ x'(t)dt, (30)

Gy=t, Sy=1t2. Let us denote Ax(t) =x'(t) = y(t) = y.
Then from (28) and (27) we have y € D(4;), AyAx =

=@'@®) =y @) =A@, yO) -2y1)=0. So we
proved that

Agy =y'(t), D(Ag) = {y(#) « C'[0, 1]: y(0) — 2y(1) = 0}.

Now we check the condition D(B;) = D(4,4). By
definition

D(A,4) = {x(t) € D(A): Ax(t) € D(Ap)} =
— {x(t) e CYO0, 1]: x(0) = —x'(),
x'(t) € C[0, 1], x'(0) — 2x'(1) = 0} =
={x(t) € CZ[0, 1]: x(0) + x(1) =0,
x'(0) — 2x'(1) = 0} = D(B,).

So D(By) = D(A4A). It is easy to verify that the
operators A, A are correct on C[0, 1] and for every
f(®) € C[0, 1] the following equations hold true

Aalf(t):j;f(s)ds—ZI;f(s)ds; (31)

Aalf(t):I;f(s)ds—%jgf(s)ds. (32)
From (30) we have

(7)=[,s7(s)ds, F(F)=[ s*/(s)ds.  (33)

It is evident that ®, F € C'[0, 1]. Consequently,
we can take Z =CJ[0, 1] = X.
Using (33) and (21) we find

13241 (13 1
F(SO)—IOS s ds—g, F(GO)—,[OS sds—g,
2
-1 ot 1 _t
Ag Go—josds—Zjosds—E—l,
2
-1 _ 1 s __§
(49 GO)—IOS[Z 1}13_ -

3
-1 _ t 9 B 19 _t _E
Ag So—fos ds 2jos ds=—-2,

_ 1 (3 2 4
(D(AOISO):.[OS[%_gjds:_E’
LO:Im—®(A51G0):18—1, L()l:%,

-1 14 -1 1
G=A5'Sy + Ay Gy Ly CD(AO so):
3 2
20 ﬁ[—ijzi(55t3—16t2—78).
3 3 |2 J11l 15) 165

Taking into account (33) we obtain
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1
F(G):% o5 (555" - 1657 —78)ds:—%.
7531
6930

and by Theorem 3 (ii), problem (26),

Since  detL=det[1-F(G)] #0  then

16930

75317
(27) or (24) is correct. By (32) we calculate

-1 330t" ~128¢° 18721 +835
3960 ’

3
ot 5
ATAGIGy =——t+—
Ao Go="g=t+ 5

and for f(¢) = 2t + 1 by (31)—(33) we obtain

Agtf=-4+t+1 A_1A51f—£—4t+ﬁ+ﬁ
’ 12 2 3’

—1,)__19 1) __17

F(AO f)_ 30’ q)(AO f)_ 12°

Substituting these values into (13) we obtain the
unique solution of (26), (27) or (24), which is given
by (25).

Example 2. The operator B;: C[0, ] — C[O0, ]
corresponding to the problem

x"(t)-sint[ t%x"(¢)dt -
—costjg/z(t+1)x"(t)dt:sin2t, (34)

x(0) + x(n) =0, x'(0) + 3x'(m) =0, x"(0) + x"(m) =0,

is correct. The unique solution of the problem (34) is
given by the formula

x(t)=—=[8(-2+ 72— 6nt + 412 + 2c082t) -
48

n(2n2 —3)(8cost +m(n—2¢ —4sint))

- -2 ’
2
3(2+n)2 4(Tc —4)cost—(27'c—1)><
x(n—2t—4sint)
+ (35)

2(7:3 —2)

Proof: If we compare (34) with equations (18),
(19), it is natural to denote ® =0, =0, F=F, =F,

Gy =g{0) =Gy, Sop =s{0) =8y, I,,=1, and to take
X =CJO0, x],

Byx(t)=x"(t)-sint[ t*x"(t)dt -

~cost [ (¢ +1)x"(t)dt = sin2; (36)

D(B,) = {x(t) € C3[0, ni]: x(0) + x(r) =0,
x'(0) + 3x'() = 0, x"(0) + x"(m)=0};  (37)

Ax=AjAx = x"(t); (38)
Ax(t) = x"(t);
D(A) = {x(t) € C?[0, n]: x(0) = —x(m),
x'(0) + 3x'(w) = 0}; 39)

o(Ax)= [Tt +1)2" (1)1,
F(Ax)=[ #x'(t)dt, (40)

Sy =sint, G, = cost, f =sin 2t. Denote Ax(t) = x"(t) =
=y(t) =y. Then from (37) and (38) we have y € D(4,),
ApAx =(x"@)) =y'(?) =Agy(@), y(0) + y(m) =0. So we
proved that

Agy =y'(®), D(Ay) =
={y(#) e CYO, n]: y(0) + y(r) =0} 41
Now we check the condition D(B,) = D(A,A). By
definition
D(AyA) = {x(t) € D(A): Ax(t) € D(Ay)} =
={x(t) € C2[0, n]: x(0) + x(x) = 0, x'(0) + 3x'(n) =0,
x"(@t) € CYO0, 7], x"(0) + x"(n) =0} =
={x(t) € C3[0, n]: x(0) + x(x) =0,
x'(0) + 3x'(n) = 0, x"(0) + x"(n) = 0} = D(B,).
So D(B;) = D(AA,). It is easy to verify that the

operators A, A, are correct on C[0, n] and for every
f(@®) € C[0, «t] from (39) and (41) follows that

Ag"1(t)=[ (t-5)F(s)ds+

+i‘.‘g(23—3t—n/2)f(s)ds; 42)
_ 1¢n
Aolf(t)=f;f(s)ds—§j0 f(s)ds. 43)
From (40) we have
@(f)=j§/2(s+1)f(s)ds, F(f)=jgszf(s)ds. (44)

It is evident that F, ® € C*[0, n]. Consequently
we can take Z =C[0, n]=X. From (43), (44), (20),
(21) we get

1, _ [t 1n .
Ay Go—jocossds—EIO cossds=sint,
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CD(AO_IGO): I(;r/z(s+ 1)sinsds=2,
A51.SO =—cost,
T

d)(A51SO): L’:/2(s+1)(—coss)ds =5

det L =det[1—d)(A51G0 )] =1-2=-120, Ly' =1,

G=45"8,+ A51G0L51®(A5130) :gsint —cost,

3
F(G):J‘nsz[ﬁsins—cossjds:n—,
0 2 2
then
2-72 4, 2
detL=det[1-F(G)]= I
-

Since detL # 0, by Theorem 3 (ii), problem (36)—
(39) or (34) is correct. Further by using (42) and tak-
ing into account that Ay GO =sint, we find

i 2t -
A71G=cost—nsmt—n( n),
2 8

A7taglG, = J.;(t —s)sinsds+

2t—7

+l.[n 23—37,‘—E sinsds=-sint—
470 2

For f(t) = sin 2¢ by (42), (43) we calculate

1-cos2t

A5'f ===, o 4g'f)=(r+2)" /16,

ATAGYf :%(41,‘2 —6nt+n -2+ 2cos2t).

Substituting these values into (13) we obtain the
unique solution of (34), which is given by (35).

Example 3. Let Q={(t, s) € R: 0<t, s<1. The
operator B;: C(Q) - C(Q) corresponding to the
problem

xtsts t3J-J.sxttsdtds—

_tszj‘o.[otx; t,s)dtds=5t%+s,
x}, xfs €C(), x(0,3) 2[ jo x(t,s)dtds,

0)=t‘[;'|‘osx£(t, s)dtds, 45)

is correct. The unique solution of problem (45) is
given by the formula

85148684¢% +31416680s%¢% +

+x(ts)- 2877624005t N
’ 172657440
32(123613741+86328720t+15746840t4)
+ . (46)
172657440

Proof: If we compare (45) with (18), (19), it is nat-
ural to denote (0) 0)

®=0;=0,F=F=F, Gog=g; ' =Gp, So=58, ' =
=Sy, I, =1, and to take X = C(Q),

Byx(t)=xfg(t, s) J. I s°x;(t, s)dtds—

—ts2j0j0tx; t,s)dtds=5t%+s; A7)
D( )—{x(t s)eC(Q), xt,
xfy C(Q 2] j (t,5)dtds;
x;(t,0)= tjo jO sx; (, s)deds); 48)
AgAx =x[(t,5); (49)
Ax(t,s)=x;(t,5); (50)

D(A)=<x<t, s)eC(9): 5 (1. 5)C(2),
2] J' x(t,s)deds,
jjsxttsdtds,

®(Ax)= jojo tay (t, s)dtds, (51)

f=5t2+s. We denote

Sy=13s, Gy=ts?,
s):y. Then from (48), (49)

Ax(t, s) =x; (t, s) = y(t,

we have
y € D(Ay),
AgAx =(x,§ (t s))s =ys(t,8)=Agy(t, 5),

y(t,0) =tj;j;sy(t, s)dtds.
So we proved that

Aoy =ys(t:s),
D(A4g)={y(t,s)eC(Q):y; €C(Q),y(t,0)=
:tJ;j;sy(t,s)dtds}.

Now we check the condition D(B;) = D(AA). By
definition
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{x(t,s)eD(A): Ax(t,s)e D(Ag )} =
—{x(t,s)ec(gz xteC( ), %(0, 8)=
L

xt t O tI J sxt t s)dtds}—
={x(t s)eC( ): %}, xf; €C(Q),
2.[ _[ t s dtds},

x t,s dtds, x{s(t,s)eC(Q),

x;(t,0)= t_[;j;sx,g (t,s)dtds}=D(By).

So D(B;) = D(A,A). It is easy to verify that the
operators A, A, are correct on C(Q2) and for every
f(t, s) € C(Q) the following hold true

-1 s
Ay f(t, s) = jof(t, sl)dsl +

g [oJos[f(ts1)ds deds; (52)

A1, s)zj';f(tl, s)dty +

%I;I;I;f(tl, s)dt dtds. (53)
From (51) for every f(t, s) € C(Q) we get

= [} [, 2 (1, s)deds,

:I;j;tf(t, s)dtds. (54)

It is evident that F, ® € C*(Q0). Consequently we
can take Z=C(Q2) = X.

Further by using (52), (54), (20), (21) for S, = 3s,
G, = ts? we get

A61S0 :J‘;t381 dSl +
2,3

4t (11 s g s
+EIO.[OSJOt Sldsldtds—ﬂ-i- > ,

A61G0 =J.;t812d81 +

At (11 s g 2t s3
+§J.OJ‘OSJ.Ot81 dsl dtds—g-l-?,

_ 101 o 2t 3% 19
F(AolGO):J‘OJ.Os2 [4—5+%]dtds:m,

o460 )= (1] [ Jdtd -2
det Iy :det[1—q>(A51G0)]=%, gt :%,

-1 -1 -1 -1
G =4Sy + Ay Gy Ly CD(AO so)z

t(907+34os3 +1034032t2)

- 2

20680
( )=ﬁ, detL:det[1—F(G)]=39967,
41360 41360
-1 _ 41360
39967

Since detL # 0 then, by Theorem 3 (ii), problem
(47), (48) or (45) is correct.
By (53) we calculate

. 9072 + 3405312 + 52 (1013+5170t4)
Alg= ,
41360

120s3#% + 2352 +16¢2
720

Al45lG -

and for f(¢, s) = 5t2 + s by (52)—(54) we obtain

2
Ay f=s—+%+5st

_ t 287\ b5st3 49¢2
Al =57 = + + ,
Ao'f = (2 432) 3 108
541 655
(AO f) 810 (AO f) 648"

Substituting these terms into (13) we obtain the
unique solution of (45), which is given by (46).

Conclusion

The main research result of this paper is the
existence and uniqueness of the operator equation
Bju =f in the space setting of Banach spaces, giv-
en that B, = ByB. The necessary and sufficient con-
ditions for the correctness of the operator B; are
intermediate, secondary results. The solution pro-
cedure follows the universal decomposition method
and provides a unique exact solution in closed form.
This method can be also applied in more complex
problems as of the type Byu = f, where B, = BOB or
B, = BOB and for B, B given by (8), (9), respectively.

The entire approach is given in an algorithmic
procedure that is reproducible in any program of
symbolic calculations.
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BBeneHue: GOJIBIIMHCTBO U3BECTHHIX METO/0B JEKOMIIO3UIIUY [IJI PEIIeHUA KPAaeBhIX 3a7au (MeTox AeKoMrIo3unuu AIoMsaHa, ecre-
CTBEHHOE IIpeo0pas3oBaHMe MEeTOAa AeKOMIIO3UIINU, MOAUMDUIIMPOBAHHBIA METOJA JeKOMIO3UIUYN ANOMsAHA, KOMOMHUPOBAHHBIN METOM
npeobpasoBanusa Jlamaca — AeKOMIIO3UIUY ATOMSHA U METO/ AeKOMIIOBUIINY 00JIACTH) UCIIOJIb3YIOT TaK Ha3blBaeMble ITIOJTMHOMBI A0~
MAHA WX UTePaIuy JJIsd TOJTyYeHUs IPUOINKeHHBIX perleHnii. HacCKOJIbKO HaM M3BECTHO, IPAMOU METOJ IOJyUYeHU TOYHOTO aHAJIH-
TUYECKOTO PellleHus IoKa He npeaiokeH. Ilexs: paspaboraTh B IPOU3BOJIBHOM 0aHAXOBOM IIPOCTPAHCTBE HOBBINA YHUBEPCATIBHBINA METO
pasIoKeHus AJs KJjacca OObIKHOBEHHBIX MHTErpo-Au(depeHInaIbHbIX YPABHEHUN WU WHTEerpo-auddepeHnaIbHbIX YPaBHEHUN B
YACTHBIX TPOUBBOAHBIX C HEJIOKAJIHHBIMU M HAYAJIHHBIMUA TPAHUYHBIMY YCJIOBUAMU B TEDMUHAX a0CTPAKTHOTO OIIEPATOPHOTO YPAaBHEHUA
B,x ={f. PesyabTaThl: HCCIE0BAH KJIacc WHTETrpo-AuddepeHuaTbHbIX YPaBHeHNH B 6aHAX0BOM IIPOCTPAHCTBE C HEJOKAJbHBIMU U Ha-
YaTbHBIMU TPAHUYHBIME YCIOBUAME B TEPMUHAX a0CTPAKTHOTO OIIepaTOPHOro ypaBHeHNA B x = Ax — S F(Ax) — G,®(Ax) = f, x € D(B,),
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rae A, A — nuHelHble abCTPaKTHBIE OTIEPATOPHI; SO, Go — BeKTOpHl, a ®, F — pyHKIUOHaIbHBIE BEKTOPHI. OOBIUHO A, A — 3TO JINHENHbIE
00BIKHOBEHHBIE quddepeHInaibabIe olepaTopsl min AuddepeHualbHble OIePATOPHI B YACTHHIX IPOU3BOAHEBIX, a F(Ax), ®(Ax) — uHTe-
rpansl @penrossma. OCHOBHBIM Pe3yJIBTATOM HAIIIETO MCCAENOBAHUA SABJISAETCA TEOPEMa CYIIeCTBOBAHUA U eIMNHCTBEHHOCTUA YPABHEHUA
B,x = f npu ycnosuu, uto onepaTop B, umeer pasnoxenue suna B, = ByB, rine B u By — pasnuuHble aGCTPAKTHbIE JIMHEIHbIe OIlepaTopEI
crenuaIbHOTO Bra. IIpeasaraeMblil MeTO/ pasjioKeHUsl YHUBEPCAJIEH U CYIeCTBEHHO OTJIUYAETCS OT APYIUX METOLOB PA3JIOXKEHUS B
COOTBETCTBYIOIIEH JiuTepaType. OTOT METOJ MOYKET OBITh IPUMEHEH KaK K OOBIKHOBEHHBIM MHTETPO-AU(DGEPEeHIINATBHBIM YPAaBHEHUAM,
TaK U K NHTerpo-guddepeHnalbHbIM YPaBHEHUAM B YACTHBIX IIPOU3BOIHEIX, 1 Ia€T eUHCTBEHHOE TOYHOE PellleHNe B 3aMKHYTOI aHaIN-
THYECKO# (popme B 6aHAXOBOM IPOCTPAHCTBE. DTAIBI METOJA PEIIeHUs UILIIOCTPUPYIOTCA YNCIEHHBIMY IPUMePaMi, COOTBETCTBYIOIIUMU
KOHKDPeTHBIM 3aauaM. CrucremMa KoMIb0TepHONU anre6psl Mathematica ncmosbayercst [iist feMOHCTpPAIIUY PE3YJIHTATOB PEIIeHU U OI[eH-
kU 9(pdexTuBHOCTY aHaNu3a. IIpakTHYecKas 3HAYNMOCTh: OCHOBHBIM IIPEUMYIIIECTBOM HACTOAIIETO METOA PEIIIeHUA ABIAETCA JIETKOCTD
ero UHTerpanuu B nuHTepdeiic g06oro mporpaMmmuoro oobecrneuernus CAS.

KiroueBspie ciioBa — KOPPEKTHBIN OIlepaTop, pasiokeHnue (pakropusanus, JeKOMIIO3UIIU) OIlepaTopoB (YypaBHEHMUIT), HMHTEerpo-aud-
(epeHIIMATBbHBIE YPABHEHNA, KpaeBble 3aaUl, TOYHOE pPellleHue.
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Introduction: To solve the Helmholtz equation is important for the branches of engineering that require the simulation of wave
phenomenon. Numerical methods allow effectiveness' enhancing of the related computations. Methods: To find a numerical solution
of the Helmholtz equation one may apply the boundary element method. Only the surface mesh constructed for the boundary of the
three-dimensional domain of interest must be supplied to make the computations possible. This method's trait makes it possible to
conduct numerical experiments in the regions which are external in relation to some Euclidian three-dimensional subdomain bounded
in the three-dimensional space. The later also provides the opportunity of not using additional geometric techniques to consider the
infinitely distant boundary. However, it's only possible to use the boundary element methods either for the homogeneous domains
or for the domains composed out of adjacent homogeneous subdomains. Results: The implementation of the boundary element
method was committed in the program complex named Quasar. The discrepancy between the analytic solution approximation and
the numerical results computed through the boundary element method for internal and external boundary value problems was
analyzed. The results computed via the finite element method for the model boundary value problems are also provided for the
purpose of the comparative analysis done between these two approaches. Practical relevance: The method gives an opportunity
to solve the Helmholtz equation in an unbounded region which is a significant advantage over the numerical methods requiring the
volume discretization of computational domains in general and over the finite element method in particular. Discussion: It is planned
to make a coupling of the two methods for the purpose of providing the opportunity to conduct the computations in the complex

regions with unbounded homogeneous subdomain and subdomains with substantial inhomogeneity inside.
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Introduction

One of the most vastly used instruments applied to
solve differential equations is the boundary element
method (BEM) because it’s possible to use BEM for
the computations in regions with infinitely distant
boundaries in order to find a solution to the so-called
external boundary problem. This is particularly im-
portant for the problems of wave propagation.

The method has been in use for a long time. Its
first mentions may be found in [1-5]. These papers
consider the collocation version of BEM. In present
days, the versions of BEM based on Galerkin’s form
are much more preferred. Probably, the first papers
describing these versions are [6—9].

There’re two versions of BEM: direct and indi-
rect. The direct method is based on the so-called
reciprocity relation, which may be seen while ana-
lyzing problems based on the concept of fundamen-
tal solution of differential equation. For example,
the classic work describing BEM in the mentioned
context is [10]. The indirect approach of BEM ap-
plied to the problem of acoustics is described, for
instance, in [11]. In our work, the direct version of
BEM is under consideration.

The classic disadvantage of the original ver-
sions of BEM is the necessity to work with dense
matrices of SLAE produced by the method. Hence
there are many different techniques helping to
minimize the asymptotic complexity of BEM while
working with such matrices. The techniques are
the method of T-spline curves[12], the wavelet ap-
proach [13—16], the adaptive cross-approximation
[10, 17-19] and the fast multipole method [20—
24].

It is also worth mentioning that BEM is only
capable of handling the cases of the domains that
can be decomposed into subdomains with homo-
geneous media. However, it’s possible to get rid of
this problem by coupling BEM with FEM (finite ele-
ment method) so that significantly inhomogeneous
domains are handled by the FEM part and the re-
maining domains are taken care of by BEM. Such
coupling is done in [25—29].

The Helmholtz equation of acoustics

The wave equation in a homogeneous medium Q
is of the form:
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62u(x, t)

Au(x, t)= 2o

+F(x,t), xeQ. 1)

The parameters of (1) in terms of acoustics can
be seen as follows: u — velocity potential; x —
point-vector in space; ¢ — time; v — speed of sound
in the medium; F — intensity-function of volume
sources of sound; Q@ — the homogeneous domain
where the problem (1) is to be solved [30].

For the boundary I' of the domain Q let the fol-
lowing be true:

F:F1 Urz, Fl ﬁrz =d.

The boundary conditions on I'; and I', are writ-
ten as follows:

u(x, t) . =Fp(x 1); (@)
ou(x, t
%XEH = Fy(x, t), 3)

where n is a normal vector defined on I" and external
with respect to Q.

Suppose for the functions in (1)—(3) the following
representation is justified:

F(x, t)=F(x)e""; @)
Fp(x, t)=Fp(x)e™"; (5)
Fy (x, t)=Fy (x)e', (6)

where i designates the imaginary unit; ® is the
angular frequency.
As a corollary of (4)—(6):

u(x, t):u(x)eiwt. (N

Substituting (7) into (1) one derives the
Helmholtz equation:

Au(x)+F*u(x)=F(x), k=—. ®)

The boundary conditions then may be represent-
ed accordingly:

u(x)|xerl =Fp(x); 9)
ou(x) ~
an xerz = FN (X). (10)

The boundary element method

The method exploits the boundary representa-
tion of the unknown function u (8) implementing
the concept of the so-called trace operators. Let us
define the trace operators for the domain Q: the
Dirichlet trace yg and the Neumann trace y7":

(ygu)(x): lim u(r), xeT; (11)
reQ,r->x
(y?u)(x): }Zim n(x)-Vu(r), xel, 12)

where n is the unit normal vector specified for the
point x on I" and it’s directed to the outside of Q.

The resulting function of the Dirichlet trace
operator applied to the function u 1s called the
D1rlch1et data and is designated as yo u, whereas
yl u stands for the Neumann data respectively.

“The solution u to the equation (8) inside Q can
be expressed by using Green’s theorem and the trace
operators defined in (11)—(12) [10]”

u(y)= _[ Gr(y, x)vTu(x)dsy —

xel”

= [ vixGi (v, x)v5u(x)dsy, (13)

xel’

where G, is the fundamental solution of the
Helmholtz equation:

s
Gr(y, x)=—> (14)

4rfx—y]
and || is the Euclidian norm in the three-

dimensional space.

By applying the two trace operators (11), (12)
to the equation (13), one can formulate a system of
integral equations with the unknowns: y(g)zu u yiu.
To formally define the mentioned system, the
half-integer Sobolev spaces are introduced:

H1/2 {g|g Yof,fGHl( )}

H—1/2 {g|g Vs f,fEHl( )}

where HY(Q) is the Sobolev space of differentiable
functions defined on Q. For the details related
to the half-integer Sobolev spaces see [27]. Let us
introduce as well the linear boundary integral
operators V,, K,, Kgdd and D,, following [10]. The
single layer operator V,, is defined as follows:

(Vif )y _[Gk ¥, x)f(x)dl,

For what follows next, suppose that F=0, so V. HY2(r) - gY2(T
there’s no volume sources of sound waves in Q. ke ( ) ( )’ (15)
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the adjoint double layer operator (K wf ):

(Krf)(y IYl,ka ¥, X)f(x)dTly,
r

K, :H Y2(r) > HY2(1), (16)
the double layer operator K ,:

(ka J. Y1 XGk(y’ )f( )dsx,
xell

Ky, :HY?(1) > HY?(1), an

and the hypersingular operator D,;:

(Daf)(¥) =71y [ 1ixGr(y> %)f(x)dsy,

xel’

Dy, : HY*(T)—» HY*(T). (18)

Here’s also the definition of the duality pairing
between the half-integer Sobolev spaces HY/2 and
H1/2;

(u, wy= .[ u(x)w(x)dsy, ueHY2 weH Y2, (19)

xel’

Using relations (15)—(18), the Galerkin rep-
resentation of integral equation can be obtained in
the following form [10]:

Vyitu, wy = <@I +K,, )yglu, w> Ywe H Y2(T); (20)
(DyyGus v) =<(§I—K;;jy?u, v>, voe HY2(T). (21)

If there’s only the Dirichlet data function defined
on I' then through the substitution of the known da-
ta into (20) one derives the variational problem with
the Neumann data as the only unknown. The varia-
tional problem (21) allows determining the Dirichlet
data when the Neumann data is predefined. The lat-
er problem is solvable and has a unique solution on-
ly when the number —£2 is not an eigenvalue of the
Laplace operator [28]. When the two conditions are
mixed on the border of Q then a variational problem
has to be solved. This problem can be formulated in
terms of the Steklov — Poincare operator [10]:

(SpY6u, v) =iy, v), (22)
where S, is defined as follows:

S, =Dy, +@I+K,;jv,;1 (%Iﬂ{k} 23)

and the test function vis from the space of functions,
that are equal to zeroonI7.

The discretization of (20) and (21) is possi-
ble via projecting the unknown data to the finite
dimensional subspaces U, ([,)c HY2(T,) =
Wy, (T )< HY/2(T},), where I, may stand for a sur-
face mesh which geometry approximates I, & is a
discretization parameter.

Let the dimension of U,(I';) be equal to N and the
dimension W, (I';) be equal to M respectively. Let al-
so g,, p=1, N be the basis functions in U,(I")), Wes
g =1, M — the basis functions in W,(I’;). In order
to construct the corresponding discreate system,
one can approximate the Dirichlet and Neumann
data using the linear combinations of the vectors
belonging to the corresponding finite-dimensional
subspaces:

rou(x Z 0pgp(x), gp €Uy (I); (24)

viu( qu g (%), wg Wy (T). (25)

Substituting (24), (25) into (20), (21) one derives

a SLAE:
M AN 26
@ olafle) @

where o is a vector of coefficients o in decomposition
(24); B — vector of coefficients Bq in (25). SLAE
blocks in (26) can be expressed as follows:

Vi =(Vyw;, wj), i, j=1, M; 27

DL,J:<Dkgl9 g])y l,]:l, N; (28)
K, = <[;I+Kkjgl, ]>,z—1 N, j=1, M; (29)
® =(Fy, &), i=1, N. (30)

The indirect integration of the function G,
stands in the formulae (27)—(29) because of the
definitions (15)—(18). This is why the computation
of (27)—(29) is not trivial. The traditional methods
of numerical integration are inapplicable to the
problem of computing the correct values because
the fundamental solution G, (x, y) is not continuous
when the arguments x and y are equal. Different
solutions to this problem are suggested in [29—-35].

FEM and BEM comparison conducted
via model problems

As a part of the computer program implemen-
tation of BEM, a mesh composed out of triangular
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elements was exploited to approximate the bound-
ary of the computational domains specified for the
model problems. The basis functions g, of W,(I7;)
used to approximate the Neumann data were cho-
sen to be piecewise constant functions equal to one
only on their corresponding local supports that are
triangles of the mesh I',. The basis functions w,
of U,(I';) are piecewise linear functions. See more
about the basis functions in [10]. For the finite el-
ement method program implementation, the quad-
ratic basis was chosen. See more about quadratic
basis implementation for the Helmholtz equation
solved via FEM in [36].

To test the efficiency of the computation strate-
gies, let us consider the model problems described
below.

The first model problem geometry looks like this:
in a closed domain of a cube with 20 m length of its
edges, a ball of radius equal to 1.5 m and a central
point coincident with the center of the cube is situat-
ed. The wave number % in (8) is equal to 2 m™1, which
corresponds to the case of the sound speed equal
to 400 m/s and the frequency equal to 127.32 Hz.
The boundary conditions for all the boundary parts
can be expressed as follows:

u(x)| . =cos(kx), (31

where x is a coordinate of x along OX axis. Every
axis of the Cartesian coordinate system is parallel
to one of the edges of the cube. It’s clear that with
conditions (31) the corresponding analytic solution
of (8) takes a form

u(x)=cos(kx) (32)

everywhere in the computation domain.

The surface mesh (Fig. 1) used for BEM compu-
tations consists of 3284 elements. The number of
nodes is equal to 1646. The volume mesh (Fig. 2)
used for the FEM computations is composed out
of 17133 elements. The corresponding number of
nodes is 26007.

B Fig.2. An example of the cube mesh used for the FEM
computations

Figure 3 illustrates the curves of relative dis-
crepancies of the solutions resulted from the im-
plementation of numerical approaches in relation
with the analytic solution. The values are given at
the points situated along the OX axis. The value of
relative discrepancy is equal to:

u(x) - (x)

*
maxiu

As one can see, the solution resulted from BEM
turns out to be more accurate than the one obtained
with FEM.

Let’s solve the problem for which the analytic
solution is known. An incident wave in a medium is
represented as follows:

¥ ei(—k~x)

inc = >

where i is an imaginary one; k is the direction of
the incident wave; x — radius vector characterizing

B Fig. 1. An example of the surface mesh of the sphere
used for the BEM computations

1 .
0 .
B
_2 E
_3 E
2 4 6 8 10
x, m
— BEM — FEM
—— BEM, with subdivision —— FEM, with subdivision

B Fig. 3. The numerical errors’ curves produced for the
plane wave solution compared with the numerical methods’
results working with the original mesh and its subdivision
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the position in space. The spheric boundary of the
ball is the source of the scattered wave ¥, .. The sum
of ¥,. and ¥,,, is denoted as Y. Let the Dirichlet
condition be imposed on the sphere:

Pl =Wine + Wclp =0,

or

Yselp, ==Yinelr =0, (33)

sc |rs

where I, is the spheric boundary of the ball.
The scattered wave should then take a form
[87]:

o0

Yee(x)= D (2m+1)i"™B, (cos(e)) x

m=0
(o () 220 )| ). 01

where P, — the Legendre polynomial of order m;
0 is the angle between x and k; j,, — the spherical
Bessel function of order m; £ — the modulus of
k or its length; a — the sphere radius; h,, — the
spherical Hankel function of order m.

To compare (34) with the numerical solution of
the Helmholtz equation, one has to take as an ap-
proximation of ¥, .(x) a sum composed out of a finite
number of terms in (34):

Yk (x)= f: (2m+1)i"" P, (cos(@))x

m=0

x [jm (kr)—%hm(kr)}ex'k. (35)

To make such comparison possible, the value of
K was chosen to be equal to 20, which provides six
digits of the approximation accuracy.

Let the value of £ be equal to 0.1 m™. To be able
to solve this problem, FEM requires the area of sig-
nificant volume to be set up. In our framework, it’s
a cube with the edge length equal to 20 m. That’s
why the FEM geometry of the computation domain
is left unchanged in comparison with the previous
problem description. The cube boundary also re-
quires the Dirichlet condition to be homogeneous.
The BEM variation of this problems is solved in the
open region.

Figure 4 illustrates that the numerical dis-
crepancy grows for FEM when the point argument
approaches the border of the computation domain
that is far away from the sphere. The set of points
used for the comparison (see Figs. 3 and 4) is the
same.

Figure 5 demonstrates the curves of relative
discrepancy only for the case of BEM computations.

0.10 A
0.08 1
0.06 -
=X
0.04 1
0.02 A1
0.00 A
2 4 6 8 10
x, m
— BEM — FEM
BEM, with subdivision —— FEM, with subdivision

B Fig. 4. The scattered wave numerical error curves

0.008 1

0.002 1
0.001

0.000 1 /\
0.001 \/

%

0.002 A
2 4 6 8 10
x, m
— BEM BEM, with subdivision

B Fig. 5. The comparison for the scattered wave with
the wave number equal to 2 m~1

FEM requires a significant number of volume ele-
ments in case of the border distant from the sphere
when £ = 2 m™l. That’s why we were unable to ob-
tain adequate FEM results.

Conclusion

The program implementation of the BEM allow-
ing the Helmholtz equation to be solved in bounded
and unbounded regions has been developed. The va-
lidity of this approach has been tested for internal
and external Dirichlet problems. The comparison
with analytics demonstrates effectiveness of BEM
relatively to FEM because the latter requires a fine
mesh to be used in the computation domains of sig-
nificant volume.
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Hcnonp3oBanue MeTOJa TPAHUYHBIX 3JIEMEHTOB IIPU PEellIeHN! YPABHEHU A I‘EJIBMI‘OJIBIIa JJIA 3aJaYi aKyCTUKH
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BBenenue: perreHve ypaBHeHUsA ['eIbMroJiblia IIpeACcTaBIsgeT NPaKTUUEeCKYI0 3HAYNMOCTD AJIsl OTpacjieil, B KOTOPBIX TPeGyeTcs Mo-
e ITUPOBaHMeE BOJHOBBIX IIPOIleccoB. VICIOIb30BaHNe YUCIEHHBIX METOOB IT03BOJISET HOBBICUTH 9(P()EKTUBHOCTD IPOBOJUMBIX PACUETOB.
MeTozapl: 111 YUCJIEHHOTO PellleHn A YypaBHEeHU A ['eIbMToJIbIla MOYKHO UCIIOJIB30BATh METO/| 'DAHNYHBIX 9JIeMeHTOB. [[Jid ero mpuMeHeHUA
HEeo0XO0AMMO IIOCTPOUTD TOJIHKO IIOBEPXHOCTHYIO CETKY IPAHUIIBI TPEXMEPHOM 00JI1aCTH, B KOTOPOI peltaercs 3ajada. JlaHHas 0cCOOeHHOCTh
TI03BOJIAET IIPOU3BOAUTE PACUEThl B TOM UKCJIe U BO BHEIIIHEH 06JIaCT! IO OTHONIEHNIO K HEKOTOPOII OrpaHUYeHHO 3aMKHYTOH moxo0a-
CTU TPEXMEPHOTO eBKJIN/I0BA IIPOCTPAHCTBA, YTO TAKIKE JaeT BO3SMOYKHOCTb O0XOAUTHCS 03 JOIOJTHUTEIbHBIX T€OMETPUYECKUX ITOCTPOE-
HUM, HeOOXOAUMBIX JJIs1 yyeTa 6ECKOHEUHO yaaJeHHo# rpaHutbl. OJHAKO pacueT MeTOAOM I'PAaHUYHBIX 3JI€MEHTOB BOSMOYKHO IIPOBOJUTH
TOJIBKO JJIsI OMHOPOAHOI 06siacTu inbO IJIA MHOYKECTBA CMEKHBIX OJHOPOAHBIX obJiacTeli. Pe3ynapraTsl: paspaboTaHa peaansaius MeToaa
TPAaHUYHBIX 3JIEMEHTOB [JIS PellleHUA YpaBHeHUA ['eIbMrosIblia IPUMEHUTEIbHO K 3a/jaUe aKYCTUKY B pPAMKaX IPOrpaMMHOT0 KOMILIEKca
Quasar. IIpoaHaIM3UPOBAHO OTKJIOHEHNE Pe3yJIbTaTOB, MOJYUYEHHBIX METOOM I'DAHUYHBIX 3JIEMEHTOB JIJIsi BHYTPEeHHEe! 1 BHeIIHel Kpa-
eBBIX 3a/la4, OT IPUOJMIKEHHON aHAIUTUKU. [IpUBOAATCS TaKKe Pe3yJIbTaThl, MOJYUYEHHBIE IIPU PEIIeHNN MOJAEJIbHBIX 3aJa4 METOAOM
KOHEYHBIX 3JIEMEHTOB, JIJIs1 CDABHEHUA ABYX PA3JINYHBIX 04X0/0B. [IpakTHUecKas 3HAUMMOCTD: JaHHBIA METO/| II03BOJIAET PEIIaTh yPaB-
HeHue ['eIbMIoJIblla B HEOTPaHMYEHHOM 06J1aCTH, YTO ABJISETCSA OOJBIIUM IIPEUMYIIECTBOM 10 CPABHEHUIO C YMCJIEHHBIMU METOJaMU, TPe-
OyOIUMU 00'EMHOM JUCKPETU3aIlNN PACUeTHOM 001aCTH, 1, B YaCTHOCTH, C METOIOM KOHEUHBIX djieMeHTOB. O0CyKaeHune: B faTbHeNeM
MJIaHUPYETCA OCYIeCTBUTh KOMOMHUPOBAHNE METOJOB TPDAHNYHBIX ¥ KOHEUHBIX dJIEMEHTOB /I PACUETOB B HEOTPAaHUYEHHO 1010061acTH
C IIOCTOSAHHBIMY IIapaMeTPaMu CPebl ¥ B PACUETHBIX MOA00JaCTAX, Ubs CPefia ABJIAETCSA CYIIeCTBEHHO HEOJHOPOIHOA.
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Introduction: A common problem in image restoration is image denoising. Among many noise models, the mixed Poisson —
Gaussian model has recently aroused considerable interest. Purpose: Development of a model for denoising images corrupted by
mixed Poisson — Gaussian noise, along with an algorithm for solving the resulting minimization problem. Results: We proposed a
new total variation model for restoring an image with mixed Poisson — Gaussian noise, based on second-order total generalized
variation. In order to solve this problem, an efficient alternating minimization algorithm is used. To illustrate its comparison
with related methods, experimental results are presented, demonstrating the high efficiency of the proposed approach. Practical
relevance: The proposed model allows you to remove mixed Poisson — Gaussian noise in digital images, preserving the edges.
The presented numerical results demonstrate the competitive features of the proposed model.
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Introduction

Image denoising is an important task in digi-
tal image processing. During the formation pro-
cedure, the image is usually degraded by noise.
The denoising problem is to recover u from an ob-
served image f with the size of M x N. In litera-
ture, many types of noise generated by different
devices and processes have been considered, e. g.,
Gaussian [1], Poisson [2], as well as mixed noise,
e. g., mixed Poisson — Gaussian [3]. In practical,
the Poisson — Gaussian model can accurately de-
scribe the noise present in a number of imaging
applications such as astronomy, medicine, biology,
etc... [4, 5]. The Poisson component accounts for
the signal-dependent uncertainty inherent to the
photon counting process, and the additive white
Gaussian noise component accounts for the other
signal-independent noise sources, such as thermal
noise [6].

As is well known, several approaches have
been developed for recovering images corrupted
by the mixed Poisson — Gaussian noise. Among
them, one of popular approaches is perhaps to-
tal variation (TV) model for mixed Poisson —
Gaussian noise removal (TVPG) [7, 8] using the
TV norm as regularization term, formulated as
follows:

* . A 2
=arg Vuldx +— —-f) dx+
u =ar Jnln(jd u| x 2_[9(” ) dx

+ B[, (u-Tlogu)dx), )

where f is the observed image; Q@ — R2 be bounded
open set and u must be positive almost everywhere
over Q; A, B are positive regularization parameters.

In literature, we can find many efficient al-
gorithms for solving the TV regularized mixed
Poison — Gaussian denoising model (1), such
as a primal-dual algorithm [9], an augmented
Lagrangian method [10-12], the split Bregman
method [13, 14], etc.

Asis well known, the TV regularizer framework
preserves edges well but has the transformation of
smooth regions into piecewise constant regions. To
avoid this problem, many regularization techniques
for the denoising problem have been introduced, in-
cluding non-local total variation [15], TV combined
with higher-order term [16], Euler’s elastic model
[17], a mean curvature model [18, 19]. Reccently,
a well-known method is the total generalized var-
iation (TGV) introduced as penalty functional for
image restoration [20, 21]. TGV includes higher-or-
der derivatives of u. Image reconstructed by TGV
regularization usually includes sharp edges and
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piecewise polynomial intensities [22]. With simplicity and prominence, the second-order TGV with weight o
(TGVO%) based models have been widely researched recently, and achieved great successes in image process-

ing [23—-25]. Applied for image denoising, the resulting model is given by:

u* :arcmin(TGV(f(u)+%fg(u—f)2 dx] 2)

u

The model (2) was proposed in [23] for denoising image corrupted by Gaussian noise. Therefore, in case of
mixed Poisson — Gaussian noise, the model itself cannot provide necessary accuracy for further data inter-
pretation and analysis.

Inspired by the advantages of TGVO% regularization, we propose an second-order TGV regularized model
for the mixed Poisson — Gaussian noise removal problem as follows:

In this paper, we employ the the second-order TGV instead of the standard TV norm in the model (1) and
propose the following optimization problem:

U arginin[TGV(f (u) +%Ig(u — f)2 dx+ s .[Q(u —flogu)dx), 3)

where A, and A, are positive parameter.

Our main contributions in this paper are following. We introduce a new total variation model for restoring
image with mixed Poisson — Gaussian on the basis of the TGV(E. The second important advantage is to extend
an efficient alternating minimization method for solving the proposed model. Furthermore, we provide ex-
perimental results to demonstrate the high efficiency of our algorithm for considered problem, in comparison
with related methods.

Proposed method

The denoising model
In this paper, we consider the following optimization problem (3):

U= argmin(TGVf (u)+%J‘Q(u —f)z dx+ kzjg(u—flogu)dx).

u

Referring [20, 24], we shortly review the concept of the second-order TGV. The definnitions can be found
in Appendix.

Following the Refs. [7, 23—26], we have theorem (Theorem 1) for the considered model.

Theorem 1. The optimization problem (3) has a solution.

Proof: The proof will be given in the Appendix for completeness.

According to [20, 23-25], the discrete TGV(E regularization of u can be formulated as

TGV(f (z)=minoy ||Vu - w||1 +ag ||£(w) L
w

where w = (wy, wy)T; e(w)= (1/2)(Vw +Vw? )
The operators g(w) and Vu can be expressed as follows:

1
V1w1 —(V2w1 +V1W2)

\%
Vu:{ 1 u} and g(w)= 2 ,

vz u E(Vzwl +V1U)2) Vzll)z

where V = (V5 V,), V; and V, are derivative operators in the horizontal and vertical directions, respectively.
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According to the version of TGVO%, the discrete version of the minimization problem (3) is given by

u* —arg min(al [Vu-w], +oy "s(w)"1 + %”u - f||; +B(1, u—flog u>) @)
u, w

Computational method

In this section, we derive the numerical method for problem (4) in detail. By the classical augmented
Lagrangian multiplier method [16, 17, 19—21], we introduce three new variables (d, g, z) and rewrite the equa-
tion (4) in the constrained optimization problem as follows:

) A 2
min_(oslaly +alel, + Hle-rIE B2 riog=) | ®

st.d=Vu-w,g=¢Ww),z=u

d
d= 1 and g= & 8 .
dy g3 &

The augmented Lagrangian functional for the constrained optimization problem (5) is defined as

with

A
L(u, w,d, g, 2,01, pg, ag)z(al l], + ezl +§||z—f||2 +B(L, z—flogz)— (0, d - Vu+w)+

# M uf? - (& g -e()) + g ()} ~(u 2—u>+n?3||z—u||§j, ©®)

where 1y, Ny, N3 — positive parameters; 0, £, 1 — with Lagrangian multipliers.
The discrete gradient Vz and the second-order derivatives V2u of an image u for the pixel location (i, j) in
u(@=1..M; j=1..N) are defined like:

Vil j=Ugq j~ Uy i Volby i = Usq i~ Uy 5

Vul.’j| = \/(Vlui,j )2 + (V2Ui’]. )2 .

The minimization method to solve the problem (6) can be expressed as follows:

Vit ;= (Veu p Vi ),

1) _ argmm[_<e<k>, o) v ) ) g

u 2
2
)
wF) = arg min[—<9, a®) _yu B+ 4 w> + T]?lud(k) “vul®) 4y

w

APy

—<u(k), () _u>+n73

‘2

2

_ <¢, g®) _g(w)>+”72||g—s(w)||2); (7

)
)
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d*) _arg min[al ]| 1— <9, d— vy (k1) > N %”d _yy(BD) (k1)
d

g—s(w(k+1)) z],

AR - arg;nin{%"z -~ f||§ +B(1, z- flogz) —<u(k), z2— u(k+1)>+n?3

ghh) _ arg;nin[az lll1— <§(h)’ g— s(w(k+1) )> . Tl?z

. u(k+1)
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with update for 9(1k+1), <";(2k+1), ugﬁl) :

2

b)) (g(w(kﬂ))_ g(k+l)); 8)

u(k+1) _ u(k) 1 (u(k+1) _ (k1) )

o(e+1) _g(k) | - (vu(kH) _ glt1) _ (k1) )

The u subproblem in (7) is given by:

b

ulFr) - arg min(—<6(k), d®) —vu + ) > + 1%Hd(k) ~vu+w H2 - <p(k) ) u> +

u 2
2 2
sl 2}*1_1 PO I BT N
2) 2 M1 2 n3
2 2
Thus, we get
(k) (k)
mvT{me__d(k)_w(kqmg[uﬂ__z(k)}o. ®
Uil M3
We can rewrite the equation (9) as follows:
(k) (k)
(ThVTV +1n3 )u(kﬂ) =m V" {d(k) rulh) - G—J +n3 [Z(k) —H—J- (10)
Uil M3

It is obvious that system (10) is linear and symmetric positive definite, therefore z#+D can be efficiently
solved by fast Fourier transform [18], under the periodic boundary conditions:

F[mVT {d(k) +wl® G(k)J 13 {Z(k) B u(k) H
k+1) _p! il N3

(
* an(VTV)+n3

, (11

where F and F! are the forward and inverse Fourier transform operators.
The w problem is

w1 arg min(—<6(k), a®) w4 w> +

w

2
+ %Hd(k) —vul®) 4y L —<E_,(k), gk s(w)> +n?2||g— s(w)”ij =
#[? #[?
zn_]- w +d(k) _Vu(k+1) _6_ +n_2 S(w)_g(k) +E"_
2 m |, 2 nz |,

Therefore, we get:
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(k) (k+1) 9(1k) T igk)
m|dy -V wp - —— 4V | Vi — g +—— |+
N1 N2
1 é(k)
+ nzvg‘ —(V2w1 + Vle ) —83 +3— = 0,
2 N2
(12)
(%) (%)
k B+l 0 1
m dg )—Vzu( + )+w2 2 +1’]2V1T —(Vzwl +V1w2)—g3+3— +
m 2 N2
T (%)
+ T]2V2 V2LU2 — 89 +2— =0.
up;
We have:
T N2 o T N2 T (k+1) _ (k) egk)
T]1[+T]2V1 Vl +7V2V2le +?V2V1W2 =M1 Vlu _dl +— |+
M
of @) [ e
+NeVy| &1 ——— |[+M2Va | &3 ———|;
M1 M1
(13)
N2 oT Ng o T T (k+1) (k) e(zk)
?Vl Vzwl +[T‘|II +?V1 Vl +T]2V2V2jll)2 =M Vzu —dz +— |+
m
N S T -
+MgVi| 83 ——— [+NaVa| &2 ——— |
N2 N2
From (13), we have a system of linear equations in two unknowns w§k+1), wgkﬂ) :
a b w§k+1) S
p ot |7 (14)
c wg +1) t
with

T M2 T T T
a=(n11+n2V1V1 +72V2V2J; b=n?2V2V1; C=%2V1Vz;

d= [1’]1[ +n72V1TV1 + 1’]2V’£V2 ];

(k) (k) (%)
B+l k) © € €
s=m V1u( ' )—d§ ) V]| g -2 |+naVa | g3 -2 |,
m m m
(%) (%) (%)
B+l k) © € €
t:nl Vzu( * )—dg )+2_ +T]2V1T g3 -3 +1’]2Vg gz -2 .
M N2 N2

Similar to the u subproblem, we can solve problems (14) with fast Fourier transform, under the periodic

boundary conditions:
w:{k+1) =F71 F(Sd_bt) . wgk+1) :F71 F(at_cs) ) (15)
F(ad—cb) F(ad—cb)
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The d subproblem is given by:

2
d(k+1) - argmin(al ||d||1—<9, d— Vu(k+1) " w(k+1)>+%“d _vu(kﬂ) N w(k+1) ‘ J _
d 2
2
(k)
=argmin| oy |d| 1+n—1 d—vuFr) 4 (B 0
d 2 |,

The solution of the d subproblem can readily be obtained by applying the soft thresholding operator [27]:

()

yuErD) _ (k1) | A

k1) _ M max| [vulF) Z (k4D +ﬂ —ﬂ, 0] (16)
v () (41) ok o
n

The g subproblem is given by:

gP) _ arg;nin{(lz lel 1—<§(k), g— 8(w(k+1) )> +n?2

P S(w(k+1))

2

2

)

&
N2

Nz

2 g_g(w(kﬂ))_

=argmin| oy ||g|| 1+
¢ 2

The solution of the g subproblem can be obtained by applying the soft thresholding operator too:

k
g(w(k+1))+§() (k)
g _ ni 'max[g(w(kﬂ)) & _0‘_2,0], (17)
g(w(k+1))+§() 2| e
N2

The z subproblem is given by:

2
SB+1) _ argmin(%"z—f"2 +B<1’ Z—f10g2>—<p(3k), Z—u(k+1)>+n?3uz—u(k+l) ‘ ]:
‘ 2
A el
=argmin| [z~ 7|2 +p(L, 2~ Flogz)+ B Jo V) >
: |2 2 n3
2

Therefore, we get
k(z—f)+ﬁ(1—ij+n3(z—u“‘*”)—p(;‘) —0.
z
This equation can be rewritten as follows:

(+13)2? —z(ngu(k”) +pl) —B+xf)—3f -0.
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The solution of z#*D is the positive solution given by:

2
(nsu(m) o) —p+ kf) + J(ngu(kﬂ) ol —p+ Xf) +4(ng +1)Bf

(k+1)
? 2(ng +1.)

(18)

The complete method is summarized in Algorithm 1. We need a stopping criterion for the iteration: we end
the loop if the maximum number of allowed outer iterations N has been carried out (to guarantee an upper
bound on running time) or the following condition is satisfied for some prescribed tolerance o:

<G (19)

where o is a small positive parameter.
Algorithm 1: Alternating minimization method for solving the model (5).
. Initialize: 2@ = 4y = f; d0) = g0 = 0; WO =0; £ = 0.
. While Stopping condition is not satisfied do:
. Compute u**D according to (11).
. Compute w**D according to (15).
. Compute d**D according to (16).
. Compute g**D according to (17).
. Compute z**D according to (18).
. Update 60", u{F1) | elF) po (g).
10.k=Fk+ 1.
11. Endwhile.
12. Return u.

N U B W

Numerical experiments

In this section, we present some numerical results to illustrate the performance of the proposed model for
MPGN removal. In order to prove the superiority of the proposed model, we compare our results with closely
related approaches [8, 23]: the TVPG model (1) and TGV model (2). For compared models, the optimization
problem are implemented by the state-of-the-art alternating minimization algorithm. The original test imag-
es are shown in Fig. 1, a—d.

All experiments were carried out in Windows 10 and Matlab running on a desktop equipped with an Intel
Corei3, 2.1 GHz and 12 GB of RAM. To assess quality of the restoration results, we use peak signal-to-noise
ratio (PSNR) defined as follows:

2552 . MN

. 12
o -
2

’

PSNR= 1010g10

B Fig. 1. Test images: a — Boat; b — Head; ¢ — Clok; d — Lake
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whereu, u”aretheoriginalimage, the reconstructed
ornoisyimage accordingly; M and N are the number
of image pixels in rows and columns.

We also use other popular measure called SSIM
(structural similarity index measure). The SSIM
measure compares local patterns of pixel intensi-
ties normalized for luminance and contrast, and
allows us to get more consistent with human visual
characteristics [28]:

(2p by +c1)(2cu,u* +e, )

&« 2

SSIM(u, u*)=
(Hi +u3* +C1)(G§ +Glzt* +C2)

where 11, 11, are the means of u, u* respectively;
6,> O, — their standard deviations; o, ,. — the
covariance of two images u and u”; ¢, =(K;L)%
¢y =(K,L)?, L is the dynamic range of the pixel
values (255 for 8-bit grayscale images), and K; < 1,
K, <1 are small constants.

For our experiments, we set tolerance in (19):
6 =0.0001 and N =200. The observed images in
our experiments are simulated as follows. To test
different noise levels, the noisy images are gener-
ated by Poisson noise with some fixed peak I

and by Gaussian noise with standard deviationmg);.
Empirically, all of the compared methods perform
image denoising with their optimal parameters. All
images are processed with the equivalent parame-
ters A = 0.4, B = 0.6, which gave the best restoration

results. For our models, we set n; =5, ny=5 and
ng=1.

In Figures 2, a—d and 3, a—d we exhibit the
results of compared methods for noise levels
I.x=120,0,=5and I, ,, =60, c,=5.

For a better visual comparison, we show some de-
tails of the restored images in Fig. 4 for noise levels
I)ax =120, 0,=5, and in Fig. 5 for I, ,, =60, 5, =5.
In these Figures, we include details of the noisy and
original images. It can be seen that our method gives
even better visual improvement than the other two
methods. For the comparison of the performance
quantitatively, the measures of PSNR and SSIM
values are reported in Tables 1 and 2. In each of the
Tables, we include the PSNR and SSIM values for
noisy images and recovered images, and the average
results over test images for each method are shown.
The better restored results are highlighted in bold.

In Figures 6, a—d and 7, a—d, we also show the
results details of compared methods for noise lev-
els I___ =120, O, = 10 and I, =60, G, = 10, re-
spectively. We report the PSNR and SSIM values
for noisy images and recovered images in Tables 3
and 4. The average results over test images also ap-
pear in last row of each table. The better restored
results are highlighted in bold.

From Figures, we can see that the images re-
covered by our proposed model are better quality
than those of the compared approaches. Beside, the
measurable comparisons reported in Tables 1-4,
the our proposed approach gets higher PSNR, SSIM
values than those of the TVPG and TGV approach-
es. It indicates the competitive performance of the
proposed method for denoising image corrupted by

a)

B Fig. 2. Recovered results for the test images with

noise level I =120, G, = 0.5: a — Noisy; b — TVPG;
c—TGV;d — Ours

B Fig. 3. Recovered results for the test images with
noise level I, .. =60, Gy = 0.5: a — Noisy; b — TVPG; ¢ —
TGV; d — Ours
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B Fig.4. The zoom-in part of the recovered images in first row and in second row of Fig. 2: a — details of original imag-
es; b — details of noisy images; ¢ — details of restored images by TVPG; d — details of restored images by TGV; e — de-
tails of restored images by our approach

a)

.
<) d) 9]

o o

B Fig.5. The zoom-in part of the recovered images in third row and in second row of Fig. 3: a — details of original im-
ages; b — details of noisy images; ¢ — details of restored images by TVPG; d — details of restored images by TGV; e —
details of restored images by our approach

B Table 1. PSNR and SSIM values for noisy images and restored images with noise level I .. =120, 6,=5

Image : PSNR : SSIM
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 20.5670 26.9777 27.1435 27.5823 0.5482 0.7688 0.7749 0.7812
Clock 15.3632 24.2404 25.9160 26.4658 0.36742 0.8856 0.8884 0.8956
Lake 18.6823 24.7286 24.7002 25.7141 0.61996 0.7649 0.7779 0.7864
Head 20.7322 26.9048 27.9500 28.8874 0.60745 0.8624 0.8657 0.8739
Average 18.8362 25.7129 26.4274 27.1624 0.5358 0.8204 0.8267 0.8343
B Table 2. PSNR and SSIM values for noisy images and restored images with noise level I, .. =60, 6,=5
Image PSNR SSIM
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 18.6799 24.0460 24.7064 25.1713 0.3871 0.6701 0.6818 0.6931
Clock 13.0537 24.3635 24.4234 25.5345 0.2600 0.8409 0.8423 0.8587
Lake 16.339 22.0954 22.4670 22.8379 0.4735 0.6762 0.6877 0.6920
Head 16.7107 25.2752 25.6161 26.4411 0.5736 0.7724 0.7923 0.8087
Average 16.1958 23.9450 24.3032 24.9962 0.4235 0.7399 0.7510 0.7631
28 / NHDOOPMAUNOHHO-YNPABASIIOWLVNE CUCTEMbI / Ne¢ 2, 2021
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B Fig. 6. Recovered results for the test images with

noise level I, =120, 5,=10: a — Noisy; b — TVPG;

¢ — TGV; d — Ours

B Fig. 7. Recovered results for the test images with
noise level I =60, O = 10: a — Noisy; b — TVPG; ¢ —

max

TGV; d — Ours

B Table 3. PSNR and SSIM values for noisy images and restored images with noise level I, =120, G, = 10

PSNR SSIM
Image
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 19.7547 24.7675 25.9887 26.1733 0.4376 0.7255 0.7218 0.7316
Clock 14.5413 22.4326 24.6121 25.9687 0.2980 0.8571 0.8421 0.8749
Lake 17.805 23.3247 23.7328 24.2787 0.5191 0.7249 0.7270 0.7396
Head 16.031 26.3812 26.5097 27.0119 0.6075 0.8154 0.8292 0.8358
Average 17.0330 24.2265 25.2108 25.8582 0.4655 0.78073 0.7800 0.7955
B Table 4. PSNR and SSIM values for noisy images and restored images with noise level I, , . = 60, G, = 10
Image PSNR SSIM
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 17.5737 23.3837 23.5885 23.8189 0.2566 0.6060 0.6054 0.6215
Clock 12.2833 24.3595 24.2930 24.4320 0.1793 0.7965 0.7726 0.8150
Lake 14.6131 20.8641 20.8629 21.5523 0.3230 0.6018 0.6097 0.6207
Head 14.1531 23.4717 24.2758 24.6904 0.4588 0.7304 0.7386 0.7496
Average 14.6558 23.0198 23.2551 23.6234 0.3044 0.6837 0.6816 0.7017
Conclusions minimization algorithm is employed for solving the

In this paper, we have investigated a second-or-
der TGVO? based model for denoising image cor-
rupted by MPGN. Computationally, an alternating

proposed optimization problem. Finally, compared
with several existing state-of-the-art approaches,
the experiments demonstrate competitive perfor-
mance of the proposed method.
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Appendix

Definition 1 [20, 23-25]. Let Q — R2 be a bound
domain, k> 1 and o = (0, ay) > 0.

Then the total generalized variation of order k
with weight o for u € LY(Q) is defined as the value of
the functional:

TGV ()= sup{ [, udiv?edx|9 < C3(0, 8%¢),

I8l <o

div&)"oO <oy } )

where d denotes the dimension of images,
C(% (Q, SdXd) is the space of compactly supported
symmetric d x d matrix fields, S%? is the set of all
symmetric d x d matrices,

. d 9% (o d 92%‘
(dive), =37, P (div®s) Zi:l’jﬂaxi@xj'

i

The infinite norms of 0 and div6 are given by

1
d 232
o, =sup( S o P

1

. d . 2\2
||d1v8||Oo =i1£(zj=1‘(d1v9)j(x)‘ j .

Definition 2 [20, 23-25]. The space of functions
of bounded generalized variation (BGV) is defined
as follows:

BGVZ(Q)= {u e 1(Q)|TavE (u)< oo},
ez =luly +TGVS (w).

BGV2(Q) is a Banach space independent of the
weight vector o, TGVO% is a seminorm and a con-
vex function in BGV2(Q). Subsequently, we de-

note the spaces UzC%(Q,]R), V =C2 (Q, Rz) and
G:C(%(Q, SM).

Proof for Theorem 1.

Let u® be a bounded minimizing sequence. By
the compactness property in the space of bound var-
iation BV(QY), there exists u* € BV(Q)), such that u(®
converges weakly to u* € BV(Q) and u® converges
strongly to u” in L1(Q). According to [7, 28—26], we
know that the functions TGVZ (u) and data fidelity
term are all lower semi-continuous, proper and con-
vex; and according to Fatou’s lemma [29], we have

E@) > E@b).

Thus, u*is a minimizer of the optimization prob-
lem (4).
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Introduction

OpenCL [1] is a widespread standard for high
performance computing. It is supported by all of the
modern graphics processing unit (GPU) and central
processing unit (CPU) vendors in contrast to ven-
dor locked Compute Unified Device Architecture
(CUDA) [2]. In particular, both Nvidia and AMD
GPU support OpenCL. There are great gener-
al-purpose computing on graphics processing units
(GPGPU) development tools in the Nvidia ecosys-
tem, but AMD development tools have fallen behind
the Nvidia ecosystem. Sometimes developers need
to analyze assembly code for implementing better
optimizations or reverse engineering. Nevertheless,
there is no public decompilation tool for AMD GPU
assembly. Decompiler also allows supporting pro-
grams without source code and checking for undoc-
umented functions and backdoors. [3, 4]

OpenCL is designed to unleash the power of
massively parallel processors. The OpenCL plat-
form consist of a host (typically a CPU) and a set of
compute devices (or, simply, devices). In this paper,
devices are AMD GPUs. To avoid confusion, we de-
note by program the code executed on the host and
by kernel, the code executed on the device. Each
compute device consists of a set of compute units.
Each compute unit consists of a set of processing el-
ements.

Massive parallelism means a large number
of launched processes. The process index space
could be one-, two-, or three-dimensional. The set
of launched process indices is called NDRange [5].

NDRange is divided by equal-sized work-groups
(Fig. 1). NDRange size must be divisible by work-
group size on each dimension. Otherwise NDRange
size is automatically increased on each dimension
to fulfill this requirement. The single process is
called work-item. Each work-item has a unique iden-
tifier (ID) in NDRange index space (global id) and
a unique ID in its work-group (local id). Each work-
group also has a unique ID (work-group ID).
OpenCL defines four types of memory:

— global memory — a memory accessible to
read and write to host and all work-items in the
NDRange space;

— constant memory — a region of host-allocat-
ed global memory that is not changed during kernel
execution;

— local memory — a memory accessible to work-
items in a single work-group;

— private memory — a memory accessible to a
single work-item.

The AMD GCN architecture

The AMD GCN architecture [6] is related to
OpenCL platform model. A GPU device consists
of several compute units. Each compute unit has
four single instruction, multiple data (SIMD)
Vector Units for computing and one SIMD Scalar
Unit for flow control. Each SIMD Unit has 16 pro-
cessing elements. One processing element con-
tains one arithmetic logic unit (ALU) and can
execute a single OpenCL work-item. Thus, one
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compute unit contains 64 ALU. Compute units
work independently.

GCN devices have two-level data cache hierar-
chy. Each compute unit has L1 data cache and an
entire GPU device has L2 data cache. Also they
have 32 KiB instruction cache. If kernel does not
fit in instruction cache, it has significant per-
formance decrease. This fact encourages GPGPU
developers to decompose a compute task between
small kernels.

AMD GCN devices have an equivalent to each
type of OpenCL memory. Global and constant mem-
ories from OpenCL are represented by video ran-
dom access memory (VRAM). The equivalent of
OpenCL local memory is Local Data Share (LDS).
Data access in LDS is orders of magnitude faster
than that of a VRAM. Private memory is stored
in registers. Data access in registers is orders of
magnitude faster than LDS. If there are not enough
registers, aregion in VRAM is allocated for private
memory. These additional “registers” are named
scratch registers. Usually scratch registers are in
data cache and decrease performance by not real-
ly much. Registers are 32-bit but they can be com-
bined into pairs for 64-bit instructions. Registers
are the most expensive and valuable memory re-
source. Each work item can have at most 256 vector
registers (VGPR) and 104 scalar registers (SGPR).
Moreover, a compute unit has only 2048 registers
for 64 ALU.

The lowest group of work-items that flow control
can affect is named wavefront. This means that all
the work-items in a single wavefront have the same
program counter. All the work-items in a wavefront
execute all branching paths (with the exception of a
case when all the work-items choose the same condi-
tional jump). Irrelevant branch paths are executed
without any effect. Each SIMD Vector Unit can run
from one to ten wavefronts depending on the used
VGPRs, SGPRs and LDS.

AMD GCN has two different application bina-
ry interfaces (ABI) [7]. The first one comes with
Windows Adrenaline or Linux AMDGPU-Pro driv-
er. The second one comes with Linux-only ROCm
driver. In this paper the first one is considered.
ABI defines data and kernel parameters’ location
in memory. Some parameters are stored in regis-
ters, others are in VRAM. More detailed location
of parameters will be considered in the next sec-
tions.

Statement of the problem

The purpose of this work is to create a decom-
piler for GCN assembly. It takes a disassembled
file as input and translates it into its equivalent in
OpenCL. Since there are no OpenCL decompilers for

AMD GPUgs, the following state-of-the-art theoreti-
cal [8-18] and instrumental [19, 20] solutions for C
and C++ were considered as a basis:

— Ida Pro (Hex-Rays plugin): Intel x86 / x64,
ARM;

— GHIDRA: Intel x86, ARM, AVR, MIPS, PIC,
PowerPC;

— RetDec: Intel x86 / x64, ARM, MIPS, PIC32,
PowerPC;

— Hopper: Intel x86 / x64, ARM, PowerPC;

— Snowman: Intel x86, AMD64, ARM.

As a result of research to achieve this goal, the
following tasks were formulated:

1) extraction of the body of the program and da-
ta of the CPU module;

2) search for memory accesses;

3) search for control structures;

4) data type recovery.

The result of solving these tasks is a translation
assembly code to an OpenCL code. Out method con-
sists of the following steps:

1. Separation of program body, configuration
part and kernel name.

2. Initialization of registers and kernel parame-
ters using application binary interface.

3. Assembly instructions processing: control
flow graph construction and determination of
stored in registers data types.

4. Transformation control flow graph into re-
gion graph and its further processing (determina-
tion of flow-control instructions).

5. OpenCL code generation using processed re-
gion graph.

The body extraction

Extracting the body of the program is a small,
but quite important task, serving as a preparatory
stage for further decompilation. In addition, here
we parse config section with work group size, num-
ber of index range dimensions, and other kernel
properties. An example of the structure of the pro-
gram body is shown in Listing 1.

Listing 1. An example of the structure of the
program body
.kernel [kernel name]
.config
dims xyz
.cws §, 8§, 2
[other kernel configuration]
text
[program body]
s_endpgm <- end of program

This config means 3D index range with work-
group size 8 x 8 x 2 (128 threads in total).
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The algorithm of body extraction is presented in
listing 2.

Listing 2. The algorithm of body extraction
parse_status = “start”
instruction_set =]
config_set =[]
program_name =
for current_row in bode_of file:
if current_row contains “.kernel”
if parse_status == “instruction”:
parse_status = “kernel”
process_data(program_name, config_set,
instruction_set)
instruction_set =[]
config_set =[]
program_name = current_row.split()[1] // take the
second word.

if current_row == “.config”:
parse_status = “config

elif current_row == “.text”:
parse_status = “instruction”

elif current_row == “instruction”:

instruction_set += current_row
elif current_row == “config”:
config_set += current_row
else:
continue
process_data(program_name, config_set, instruction_set)

The program body consists of a sequence of as-
sembly instructions. Most of GCN assembly in-
struction names consist of three parts delimited by
symbol “ 7. In this paper they are called prefix, root
and suffix.

Prefix means one of the following instruction
types:

— Scalar instructions. Operands are mostly
SGPRs. These instructions are used to control flow
instructions, VRAM access, thread synchroniza-
tion, atomic operations and others. The prefix is
“s”,

— Vector instructions. Operands are mostly
VGPRs. These instructions are used for computing.
The prefix is “v”.

— Data share operations. Instructions for ma-
nipulating with LDS. The prefix is “ds”.

— FLAT instructions. Operands are mostly
pairs of VGPRs that hold 64-bit address. These in-
structions are used to access to VRAM, LDS and
scratch buffer. The prefix is “flat”.

Suffix (if present) means data type and size.
Supported data types are indicated by the following
suffixes:

i — signed integer;

u — unsigned integer;

f — floating-point;

b — binary (for bitwise operations).

The data type size can be 8, 16, 24, 32 and 64.
Some instructions contain double suffix. For exam-
ple, V_.MUL_HI instruction family (V_.MUL_HI
132 124, V. MUL_HI U32 U24).

The rest of command name defines the oper-
ation. Some operations do not have direct equiva-
lents in OpenCL. Such operations are decompiled
to several OpenCL instructions. Otherwise, some
assembly instructions are grouped and decompiled
into a single OpenCL instruction.

AMD GCN devices do not have a call stack.
Consequently, all the function calls are inlined
into a kernel. Therefore, assembly code does not
have any information about functions. We can on-
ly guess that there was a function if we discovered
identical code fragments (ignore register renam-
ing). But such an analysis is not considered in this

paper.

Search for memory accesses

Assembly instructions processing starts from
searching for memory accesses. The basic data
structure used in the following algorithms is called
Register. It holds the information about a single
register and contains the following fields: version,
type, integrity. Integrity can hold one of these val-
ues: {entire, high_part, low_part}. Entire means
the register holds the whole 32 (or less) bit varia-
ble. Other values mean the register holds a part of
64 bit variable.

AMD ABI documentation contains description
for OpenCL work-item built-in functions.

At this stage, the following functions are sup-
ported:

get_global_id(uint dimindx);

get_global_offset(uint dimindx);

get_local_id(uint dimindx);

get_global_size(uint dimindx);

get_local_size(uint dimindx);

get_group_id(uint dimindx);

get_num_groups(uint dimindx);

get_work_dim().

The result of these functions is stored to specific
addresses. Therefore, if such an address is loaded
into a register, then further access to that register
means a call to this function.

The get_global_id(dim) function returns a global
thread identifier that is unique in the entire task
space. dim can take possible values of 0, 1 or 2.
Since the thread numbering can be shifted in ker-
nels, in order to get a thread index starting from
zero, there is the following idiom:

uint idx0 = get_global_id(0) -
get_global_offset(0);
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This thread index is often used to refer to an ar-
ray. We parse this index and get_global_id in the
following steps:

In the first step, we detect get_global_offset(uint
dimindx). The value of this function is stored
in global memory by address s[4:5]. So instruc-
tion s_load_dwordx2 s[2:3] s[4:5] OxO means
get_global_offset(0) stored in register pair s2, s3.

The second step is determining the local ID: get_
local_id(0). Local ID is stored in register vO before
the program starts executing, and in case of 2D or
3D index range get_local_id(1) and get_local _id(2)
are stored in v1 and v2, respectively. Therefore
the field type of these registers data is filled be-
fore the instruction processing (it corresponds to
get_local_id(uint dimindx)).

The third step is identifying the work-group ID:
get_group_id(uint dimindx) . The result of calling
this function is also compile-time constant and
stored before the program execution. If “useargs”
is used by the kernel in the configuration,
get_group_id(0) is stored in register s6, and (in
case of 2D and 3D index range) get_group_id(1) and
get_group_id(2), are stored in s7 and s8, respective-
ly. This instruction is processed like the previous
one. The registers fields type are filled with corre-
sponding values before the instruction processing.

The fourth step is discovering the work-group
size. In OpenCL this value can be retrieved using
get_local_size function. It is impossible to deter-
mine the call to this function from the assembly
code. This is because the value of this function call
is replaced by numeric constant. Therefore, we have
no semantic information about this number in the
assembly code. However, we have obtained work-
group size in the previous section.

The last step is multiplying the work-group ID by
the work-group size, and then the local thread ID.

Function get_global_id(uint dimindx)is decon-
structed in similar way but with the addition of the
offset value.

The result of a function that returns the
size of the workspace in a given dimension,
get_global_size(uint dimindx), is stored in glob-
al memory by address s[4:5]+ Oxc, 0x10 or Ox14
depending on the dimension. Processing of this
instruction is same with get global offset: da-
ta type inference is done using instruction
s_load_dword with offsets (Oxc, 0x10, 0x14).

Next, consider a function that returns the num-
ber of work-groups that will run the kernel for a
given dimension, get num_groups(uint dimindx).
The value is obtained by dividing the size of the
workspace by the size of the work-group for a given
dimension.

The last function to consider is get_work_dim().
It returns the number of dimensions used. The val-
ue is obtained when dword is loaded from the reg-

isters storing a pointer to kernel settings — s[4:5],
with an offset of 0x20010. Processing of this in-
struction is the same with get global_offset u
get_global_size.

The result of matching with the presented tem-
plates is a restoration of work-item built-in func-
tions.

Also, calls to array elements and simple arith-
metic operations were supported.

Search for control structures

The decompiler was implemented using an al-
gorithm based on structural analysis [21]. At first
step, we construct the control flow graph [22]. After
that, we transform it to region graph. Initially, each
instruction represents one region.

The analysis process in based on depth-first
search. Each node is checked whether it is a header
of one of known templates. If the template is deter-
mined, all the nodes corresponding to this template
are merged into a single node. This process is iter-
ated until the single node remains.

Our decompiler supports the if construction. The
template presented for it in Fig. 2, corresponds to
the one described in theoretical solutions, and does
not require any additional transformations for de-
tection and decompilation.

The region graph processing algorithm is illus-
trated by the example shown in Fig. 3. The algo-
rithm consists of the following steps:

1. Regions ##1-3 are not beginning of any
known templates. Region #4 in conjunction with
regions #5 and #6 constitute an if template.
However, region #6 is connected with another re-
gions. So, we merge only regions #4 and #5 into a
new region #7.

2. Regions #1 and #2 are not beginning of any
known templates. Regions #3 and #7 constitute a
linear region. Merge them into a new region #8.

3. Region #1 is not beginning of any known tem-
plates. Regions #2, #8 and #6 constitute an if tem-
plate. Region #6 is connected with another region
(region #1), so merge only regions #2 and #8 into a
new region #9.

Checked
condition

v
Label

B Fig. 2. Template for if statement

Body if condition
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4. Regions #1, #9 and #6 constitute an if tem-
plate. Merge them into a new region #10.

5. There is a single region now. So, we extracted
all flow-control information from the region graph
and can now generate OpenCL code.

The main difference with CPU if-else template
is the presence of a 64-bit mask, which is respon-
sible for the execution of threads. This is because
64 threads have the same instruction pointer. AMD
compiler generates if-else construction in several
forms. We demote the most frequent form as the
first form. The first form is shown in Fig. 4, a. For
more convenient processing, this template was re-
duced to the form shown in Fig. 4, b (standard
form).

In this paper we also consider another two fre-
quent forms. We denote them as the second form
and the third form. The second form is shown in
Fig. 5, a. The third form is shown in Fig. 5, b. The
reduction the second form of if-else template to
the standard form (see Fig. 4, b) consists of two
steps:

1. Transformation to the first form of if-else tem-
plate.

2. Reduction to standard form.

The second form of if-else template looks like the
if template. But the main difference is the second
change exec mask and else condition body before
restoration of exec mask. The main difference be-
tween the first form and the second form is a quan-
tity of “goto” labels.

The transformation of the second form to the
first form is made by fake insertion of the second la-
bel after the else condition body and condition jump
to the second label before it. The transformation of
the third form is made similarly.

The processing of nested structures is the fol-
lowing. Firstly, the most nested structures are
detected using control instruction templates.
Detected structures are combined in the region

graph. After that, the most nested of the remain-
ing structures can be detected. The processing is
continued until the root structure is combined in
the region graph.

When processing branches, it was taken into
account that at a vertex that has several ances-
tors, the values of registers can be determined
ambiguously. And if in the future some of these
registers were used, then variables were created
for them. In the implementation, this was done by
assigning versions to registers and working with
them [23, 24].

The last considered in this paper control struc-
ture is the ternary operator. It is represented in the
assembly code of one instruction and does not re-
quire overlapping templates.

_____ <

|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
]

Save and
change exec

a) mask

Check jump to
label 1

Body if condition

Change exec
mask

—

Check jump to
label 2

~ @@

Body else
condition

Label 2

Restore exec
mask
Check condition
in if part

b)

Body if
condition

Body else
condition

6 6
______ 4 N —__= -
Step 2 Step 3 Step4  Stepb . . .
B Fig. 4. Templates for if-else conditions part 1: a —
B Fig. 3. Example of region graph handling with two labels; b — standard form
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a)

Save and
change exec
mask

—

Check jump to
label 1

Body if condition

Changeexec
mask

Body else
condition

Restore exec
mask

b)

Save and
change exec
mask

Body if condition

Change exec
mask

Check jump to
label 2

Body else
condition

Restore exec
mask

B Fig.5. Templates for if-else conditions part 2: a — with label in the if part; b — with label in the else part

Data type recovery

Two ways of data type recovery were imple-
mented: from the .config section of kernel and
using assembly instructions. The .config section
contains data types for kernel arguments. For ex-
ample, the .config section of kernel with signature
void copy(__global int *data, int x) is shown
in Listing 2. As can be seen from Listing 2,
data type for kernel arguments can be restored un-
ambiguously.

Listing 3. Kernel arguments
.kernel copy
.config

.dims x

.cws 64,1, 1

.sgprsnum 13

vgprsnum 3

.floatmode 0xcO

.pgmrsrc1 0x00ac0040

.pgmrsrc2 0x0000008¢c

.dx10clamp

.ieeemode

.useargs

.priority O

.arg_.global_offset_0, “size_t”, long

.arg_.global_offset_1, “size_t”, long

.arg_.global_offset_2, “size_t”, long

.arg _.printf_buffer, “size_t”, void*, global, , rdonly
.arg_.vqueue_pointer,”size_t”, long
.arg_.aqglwrap_pointer,”’size_t”, long

.arg data, “int*”, int*, global,
.arg x, “int”, int

Data type determination using assembly in-
structions is based on instruction suffixes. For ex-
ample, instruction

s_add_u32s0, s4, s0

means sum of two unsigned 32-bit integers.

Practical implementation

As a practical implementation of this research,
the OpenCL Decompiler tool was developed. At this
moment, it supports only a reduced set of AMD
GCN ISA.

The OpenCL Decompiler was implemented in
Python 3. It requires an assembly file compatible
with CLRX Disassembler [25] output or CodeXL as-
sembly listing as input data.

The output of the OpenCL Decompiler is a valid
OpenCL file. All decompiled kernels can be com-
piled and executed on AMD GPUs. The exception is
case when the decompiler gets an unsupported in-
struction. In this case decompiler lefts unsupport-
ed assembly code as is in inline assembly (inline
assembly is not supported by AMDGPU-Pro driver
and cannot be compiled).

The source code is available at https://
github.com/sudo-team-company/OpenCLDecom-
piler.

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 39



/  NPOrPAMMHbIE 1 ANMNAPATHBLIE CPEACTBA /

The repository has about 931 synthetic tests and
real free open-source kernels. Decompiler passes all
the tests in the repository, which confirms correct-
ness described functionality.

The examples of the real kernels are mask kernel
and weighted sum_kernel (https://github.com/ga-
nyc717/Darknet-On-OpenCL/blob/master/darknet_
cl/cl_kernels/blas_kernels 1.cl). The result of their
decompilation isin folder real tests (https://github.
com/sudo-team-company/OpenCLDecompiler/tree/
master/tests/real kernels).

These tests confirm the compliance of the theo-
retical considerations and practical results.

Conclusion

In this paper, a decompiling method for AMD
GPU assembly was described. It has an implementa-
tion called OpenCLDecompiler and was introduced
into Sudo Ltd. The OpenCLDecompiler tool was
demonstrated on real open-source projects. All of
this reveals the practical applicability of described
method.

The described method is based on standard tech-
niques for CPU decompilers but some techniques
required significant modification for massive par-
allel architecture.

Decompiler works with any valid assembly code.
However, restoration of some complicated loop con-
structions and some instructions is not implement-
ed. In this case all supported assembly instructions
are decompiled into a pseudo-code in accordance
with their documentation. Unsupported instruc-
tions are remained unchanged. This approach does
not provide full-fledged OpenCL code but signifi-
cantly facilitate further manual code analysis.

It is further planned to extend the set of sup-
ported instructions and support the new RDNA ar-
chitecture [26] and processing of more complicated
flow control instructions.
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Brenenue: 1eKOMIUIATOPBI ABISAIOTCA YIOOHBIM HHCTPYMEHTOM IS AHAJIM3A U MOAIEPKKHU IPOIPAMM IIPU OTCYTCTBUU UCXOTHOTO KO-
na. CylLecTBYIOT JeKOMIIMISATOPSI AJ15 MHOTUX aPXUTEKTYP U A3bIKOB IIPOrPAMMUPOBAHUSA, HO IJIA IpapMuecKruX IIPOIeCCOPOB CeMeCTB
AMD GCN u RDNA rakoro nHCTpyMeHTa B HacTosIee BpeMmda HeT. Ileab: paspaborars feKoMnuiaaTop accembiaeproro koga AMD GPU
B s3bIK mporpammMmupoBanusa OpenCL, IIIUPOKO MCIOIL3YEeMBbIN AJIA MPOTPAMMUPOBAHUA Ha ycTpoiicTBax Kaacca GPGPU. PesyabTaTsi:
OIIpe/iesIeHbl AJITOPUTMBI IIEPBUYHON 06pab0TKHU acceMOJIepPHOr0 KOJa: BhIAeJeHNe Ha3BaHUsA IPOrPAMMBI, IAPAMETPOB U TeJia IIPOrpaM-
MBbI; IIOMCKa OOpAIeHn K JaHHBIM U K 9JIeMeHTaM MAaCCUBOB; U3BJIEUEHNUA CUCTEMHBIX 3HAUEHU; IONCKA U JeKOMINIAIUA HEKOTOPBIX
apudmeTnuecKux omepamnuii. Takske BLIPAGOTAH METO BOCCTAHOBJIEHUA TUIIOB U IJis PAGOTHI C JIOKAJIbHON maMaThio. PaspaboTansb 1mia-
GJIOHBI IJIA OIpee/IeHNs YIPABJIAIINX KOHCTPYKIuii. [IpaKTHyecKkas 3HAYMMOCTD: IIPEIJIOKEHHbIE aJTOPUTMBL X METOJ PeaJrn30BaHbl

Ne2,2021 N\ VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ a



/  NPOrPAMMHbIE 1 ANMNAPATHBLIE CPEACTBA /

Ha sa3eike Python B Buge uncrpymenTa OpenCLDecompiler, mogaeps;xuBaoIiiero JoCTaTOUHO 0OJIBIIOE IIOJMHOMKECTBO KOMAH apXUTEK -

Typsl AMD GCN. Pazpa6oTaHHbIil THCTPYMEHT IPOU3BOJUT JeKOMIUIAINIO aCCeMOIePHOT0 KO/ia, IIOJYUeHHOTO B pe3yJabTaTe JU3acCeM-

OJIMpOBaHUA UCIOJHAEeMOro (aitia, B Kox Ha A3bike OpenCL, 4To ITO03BOJISIET COKPATUTD TPYA03aTPAThI HA aHAJIN3 acceMOJIePHOTO Koa.
Kirouesslie ciioBa — IeKOMIUIATOD, ausaccembiep, OpenCL, AMD GCN, GPGPU, rpad moToka yupasieHus, oOpaTHas paspaboTKa.

Ias puruposanua: Mihajlenko K. I., Lukin M. A., Stankevich A. S. A method for decompilation of AMD GCN kernels to OpenCL.
Hugpopmayuonno-ynpasasaoujue cucmemvt, 2021, Ne 2, ¢. 33—-42. doi:10.31799/1684-8853-2021-2-33-42

For citation: Mihajlenko K. I., Lukin M. A., Stankevich A. S. A method for decompilation of AMD GCN kernels to OpenCL.
Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2021, no. 2, pp. 33—42. do0i:10.31799/1684-8853-2021-2-
33-42

YBaxaeMmsble aBTOPBI!

IIpu moAroTOBKE PYKOIMUCeH cTaTeil He0OX0AUMO PYKOBOJACTBOBATHCA CIAEAYIOUUMH PEKOMEeH AU MM,

CraTbu JOJIKHBI COIEP;KATH U3JI0JKEHNE HOBBIX HAYUHBIX pPe3yibTaTroB. HasBaHue cTaThy JOIKHO OBITH KPDATKUM, HO MH()OPMATHUBHBIM.
B HasBaHUU HEJOIIYCTUMO UCIIOJIb30BaHUE COKpaIlleHnii, KpoMe cambixX obmienpuaaTeix (PAH, P®, CAIIP u T. 11.).

TexcT pyKOIHCH LOJIKeH OBbITh OPUTMHAILHEIM, & IIUTUPOBAHYE U CAMOIIUTIPOBAHIE KOPPEKTHO 0(hOPMIIEHO.

O0bem craTbu (TEKCT, TaOIUIILI, UILIIOCTPAINY U Oubanorpadusi) He JOJIKeH IIPeBbIMIaTh 9KBuBajgeHTa B 20 cTpaHuIl, HalleyaTaHHBIX
Ha 6ymare popmara A4 Ha oxHOM cTopoHe yepes 1,5 narepsana Word mipudrom Times New Roman pasmepom 13, moJist He MeHee ABYX CaH-
THMETPOB.

O06s3aTeIbHBIMUY 9JIeMeHTaMu 0(DOPMJIEHU S CTaThU ABAAIOTCA: uHAeKe ¥ 1K, 3arsaBue, nHuuans! u pamMuand aBropa (aBTOpOB), yue-
Hasd CTelleHb, 3BaHUe (IIPX OTCYTCTBUU — JOJ’KHOCTEH), ITOJTHOE HadBaHUe OPTaHM3aIliN, AHHOTAIINA U KJII0UeBble CJI0Ba HA PYCCKOM U aH-
ryiniickoM A3bIKax, ORCID u a/1IeKTPOHHBIH aIpec 0JHOTO U3 aBTOPOB. IIpy HanmcaHNY aHHOTAI[UY He UCII0JIL3YiiTe a00peBUaTyp U He Jeaii-
Te CCHIJIOK Ha MCTOYHUKU B CIIUCKe JIuTepaTypsl. [IpenocTaBisiiTe HOgPUCYHOUHBIE IOAINCY U HA3BAHUS TAOINUI] HA PYCCKOM U aHIVINHCKOM
SABBIKAX.

CraTbu aBTOPOB, He UMEIOIIUX YUEHOH CTEeIIeHN, PEKOMEHYeTC s ITy0IMKOBATh B COABTOPCTBE C HAYYHBIM PYKOBOANUTEIEM, HAJIIUNE ITO/IINCH
HAYYHOTO PYKOBOAUTEJA Ha PYKOINUCH 00s3aTeJILHO; B CIyUae CAMOCTOATEILHON IyOINKAIIY 0013aTeIHbHO IIPEIOCTABIIANTe 3aBEPEHHYIO 110 Me-
CTy paboThl PEKOMEHJAIINIO HAYIHOT'O PYKOBOJUTENA C YKa3aHUEM ero (paMuaIny, UMeHH, OTUECTBa, MecTa PaboThl, TOJIKHOCTH, YUEHOTO 3BaHMU,
YUEHOI CTEIIeHN.

Dopmyasr HabupaiiTe B Word, He ncnosibays hopmyabHbIil pegakrop (Mathtype niu Equation), mpu Heo6xoquMoCTH MOYKHO HCIIOIB30-
BaTh GOPMYJILHBIN PelakToP; A1 Habopa 0JHOIT (DOPMYJIbI He UCIIONIb3YIiTe Ba PeJaKkTopa; npu Habope hopmyst B HOPMYIBEHOM peJaKkTope
3HAKH IpeNuHaHNsA, orpaHnYuBaoue GopMyry, Habupaiite BMecTe ¢ (pOpMyJIOi; AJIA YCTAHOBKU pasMepa IIpu@Ta HUKOTa He I0JIb3yii-
Tech BKJIaAKoM Other..., ncnonbayiiTe 3aBo/iCKIe YCTAHOBKY PeJaKTOPA, HE IIOATOHANTE pa3Mep CUMBOJIOB B GopMyJIax 1moJ pasmep mpudra
B TEKCTE CTaThbU, He PACTATUBATe U He CKUMANTe MBIIITBI0 (DOPMYJIbI, BCTABJIEHHBIE B TEKCT; B (DOPMYyJIaxX He OTAeJAiTe IpodeiaMy 3HAKNU:
+=-.

st mabopa popmys B Word Hurorga He ucnoabdyitre KoucrpykTop (#a BepxHeit nanenn: «Pabora ¢ popmynamu» — «KoucrpyrTop»),
TaK KaK 9TOT pecypc IpeJHasHAUeH TOJIbKO AJIA BHYTPEHHEro NCIIoIb3oBanusa B Word 1 He IOAAepIKUBaeTCs IIPOrpaMMaM, IIpeJHa3HAUYeH-
HBIMU [IJIs1 U3TOTOBJIEHU A OPUTHHAI-MaKeTa KypHaJa.

IIpu HaGope CMBOJIOB B TEKCTE IIOMHUTE, YTO CIMBOJIBI, 0003HAUAEMbIe JIATHHCKUMY OyKBaMu, HAOUPAIOTCA CBETIBIM KYPCUBOM, PyC-
CKUMU U TPEUECKUMU — CBETJIBIM IPAMBIM, BEKTOPBI ¥ MATPUIIBI — IIPAMBIM MOJIYKUPHBIM IIIPUQTOM.

WnnrocTpanuu IpefocTaBIsg0TCA OTAeIbHBIMY UCXOQHBIMHY (haiizaMu, TOANAI0IINMUCH PeAaKTUPOBAHUIO:

— PUCYHKU, rpauKu, [UarpaMMbl, OJI0K-CXeMbl IIPeOCTABIANTe B BUAE OTAEIbHBIX HCXOAHBIX (DaiiioB, MOAJAIOMNXCSA PeJaKTIPOBa-
HUI0, UCIOJIB3YysA BEKTOPHBIE MporpaMmbl: Visio (*.vsd, *.vsdx); Coreldraw (*.cdr); Excel (*.x1s); Word (*.docx); Adobe Illustrator (*.ai);
AutoCad (*.dxf); Matlab (*.ps, *.pdf wiu sxcropT B opmar *.ai);

— €ecJIM PeflaKTop, B KOTOPOM BBI M3roraBinBaeTe pUCYHOK, He ITO3BOJIAET COXPAHUTL B BEKTOPHOM (hopMare, UCIOJIb3YiiTe (DYHKIINIO
9KCIOpTa (TOJIBKO II0 OTHOIIIEHUIO K UCXOJHOMY PUCYHKY), HallpuMep, B hopmar *.ai, *.esp, *.wmf, *.emf, *.svg;

— ¢oto u pacTpoBble — B (popmate *.tif, *.png ¢ makcumanabHBIM pasperienuem (He meHee 300 pixels/inch).

Hanuure moApuCyHOUHBIX MOAIKCEN U Ha3BAHUH TAOJ/IUI] HA PYCCKOM U aHIVIMIICKOM A3bIKaX 00A3aTeJIbHO (JKeIaTeIbHO He IIOBTOPSIO-
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Introduction

Currently the most widely used public-key cryp-
toschemes exploit the computational complexity of
the factoring problem (FP)[1, 2] and the discrete log-
arithm problem (DLP) [3, 4]. However, the expected
breakthrough in quantum computing technology in
the near future makes it extremely urgent to devel-
op cryptosystems that are resistant to attacks using
quantum computers. Post-quantum public-key cryp-
tosystems should be based on computationally diffi-
cult problems other than FP and DLP, since efficient
polynomial algorithms for solving FP and DLP on a
quantum computer are known [5—7].

In the current field of development of public-key
post-quantum cryptoschemes, considerable atten-
tion of the cryptographers is paid to the development
of cryptoschemes on algebras [8, 9], on boolean func-
tions [10, 11], and on linear codes [12, 13].

One of attractive post-quantum primitives is the
hidden discrete logarithm problem (HDLP) defined
usually in non-commutative finite associative al-
gebras (FAAs). Different forms of the HDLP were
proposed to develop signature schemes on non-com-

mutative FAAs [9, 14, 15]. For the first time, a
signature scheme on a commutative FAA was pro-
posed in [16]. The interest in the HDLP problem is
related to the fact that the HDLP-based signature
schemes have relatively small sizes of the public key
and signature. This area of research is quite new,
and for a deeper and more complete understanding
of the possibilities for the development of practical
post-quantum HDLP-based, it is of significant in-
terest to search for new forms, especially for the
case of using commutative FAAs as a carrier of the
HDLP.

In this paper, we propose a new form of setting
the HDLP in commutative FAAs characterized in
that the multiplicative group of the algebras pos-
sesses four-dimentional cyclicity in terms of the
paper [17]: a finite commutative group whose min-
imum generator system includes p (u > 2) elements
that have the same order is called group with p-di-
mensional cyclicity. The method of setting the pro-
posed form of the HDLP is fundamentally different
from the method introduced earlier in the paper
[16] for development of the HDLP-based signature
on a commutative algebra.
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Two commutative FAAs used
as algebraic support

A finite m-dimensional vector space over the fi-
nite ground field GF(p), in which a vector multipli-
cation operation is defined additionally to the sca-
lar multiplication and addition operations, is called
m-dimensional algebra, if the vector multiplication
is distributive at the left and at the right relatively
the addition. A vector A is presented as an ordered
set of its coordinates: A =(a, a, ..., a,,_;) orasasum
of its components: A = age, + a,e; + ... + a,,_je, 4,
wheree,; (=0, 1, ..., m — 1) are formal basis vectors.
Defining additionally the operation of vector multi-
plication (o) possessing the property of the two-sid-
ed distributivity relatively the addition operation,
one gets the finite m-dimensional algebra.

Usually, the multiplication of two vectors

AZZZ a;e; and B= Z 0 bje; is defined by the

following formula: AoB= z z

where the coordinates a; and b; are multlphed as
elements of the field GF(p) and every the product
of two formal basis vectors is to be replaced by an
one-component vector indicated in a cell at the in-
tersection of the i-th row and j-th column of so called
basis vector multiplication table, for example, see
Table 1 [16]. Each of these tables defines a four-di-
mensional commutative FAA, multiplicative group
of which has order Q that can be computed as num-
ber of invertible vectors. Consider, for example, the
algebra defined by Table 1.

The unit element of this commutative FAA is the
vector E=(0, 0, 1, 0). If for some vector A the vector
equation

abe oe;

AX=E 1)
has a unique solution, then the vector A is called
invertible. For a fixed invertible vector A the
vector equation AX = E has a unique solution
denoted as Al (called inverses of A). Evidently,
AA1l = A1A = E. An invertibility condition can
be derived from equation (1) that can be reduced

7

B Table 1. Setting the multiplication operation in the
first used FAA multiplicative group of which possesses
multi-dimensional cyclicity (A # 0)

€ € €3 €3
e Ae, eg e rey
€ €3 €y € €9
€y €9 € €y €3
es heq e, es Aegy

to the following system of four linear equations,
where the unknowns are coordinates of the vector
X =(xg, X1, Xg, X3):

agXp +agxy +agxg +ayjxg =1
hagxg +agxy +a1x9 +hagxg =0
Aagxg +ayx; +agxs +hagxz =0
a1xg +agx; +agxg +agxg =0

The main determinant of the system (2) is

as az ay o
rag a9 ap hag ay a1 Mg
A= =agla; a9 Aag|-—
rag a1 as Aag
4G a az a Yo G @
Aag  a; Aag rag a9 Aag
—aglhag ag Aag|+aglhay a; Aag|-
ap ag as ay ag as
hag as o
—a1lhag a; agy :ag(ag(a§ —kagz,)—
ap ag ag

~ a1 (ayas ~hagag) +hag (a1a3 —agaz )) -
—asg (7\.(13 (ag - ?xd% ) -1 (?»aoaz - kalag ) +
+ }\.0/0 (7\.(10@3 — a0y )) + Qg (}\.(13 (alaz — 7\.00&3 ) —
—ag(Lagag —rajag)+rag (kag —a? )) —
-—aq (7\.(13 (a1a3 —apay ) —ay (Ka0a3 —ayay ) +
2
+ al(ka(z) —alz))z ..=k2(a(2) +a§) —4ka§a§ +
2
+ (a12 +a§) —4ka§a§ —27»((13 + a§)(a12 +a§)+
2
+ 8lagajasag =...= (Xag —a12 —a% + ka%) -

- 4(7\.(10(13 —a109 )2 .

The case A # 0 defines the following invertibility
condition:

2
(}»ag p— +ka§) —4(1agag —aqas )2 #0. (3)

The case A = 0 defines the following non-inverti-
bility condition:

@

2
(kag ~a? a3 +ka§) =4(Lagag —ayaz )2 .

Proposition 1. Suppose the structural constant
A is a quadratic non-residue in GF(p). Then the
number of different non-invertible vectors in the
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four-dimensional FAA set by Table 1 is equal to
n=2p2-1.

Proof: The non-invertibility condition (4) sets
the following two cases:

i) kag —a12 —a% + ka% =2\agag —2a1a9 =
2 2
=Mag—-a3)” =(ag —as)";
ii) kag —a12 —a% +ka§ =-2hagag +2a1a9 =

:>?»(a0 +a3)2 =((11 +a2)2.

If the structural constant A is a quadratic
non-residue modulo p, then for the first case the

equality holds true only if (ag —ag )2 =(a; —ay )2 =0.
This gives p different sets of coordinates a, and a;
and p different sets of coordinates a, and aj, in-
cluding the zero vector (0, 0, 0, 0). Totally, in the

first case we have p2 — 1 non-inverible vectors.
In the second case the equality holds true only if
(ag +asg )2 =(ay +ay )2 =0. This defines other p2
sets of coordinates ay, ay, a5, and ag, including
(0,0, 0,0). Therefore we have n=2p2— 1. Proposition 1
is proven.

Proposition 2. Suppose the structural constant
A is a quadratic non-residue in GF(p). Then the or-
der of the multiplicative group of the FAA set by the
Table 1 is equal to Q = (p2 — 1)2.

Proof: Among p* different vectors of the algebra
you have 1 = 2p2 — 1 non-invertible ones, therefore
Q= p*-n=(p?-1)2. Proposition 2 is proven.

Proposition 3. Suppose the structural constant A
is a quadratic residue in GF(p). Then the number of
non-invertible vectors in the four-dimensional FFA
set by Table 1 is equal to n = 4p3 — 6p2 + 4p2 - 1.

Proof: Since the structural constant A is a quad-
ratic residue, formula (4) defines the following two
cases:

i) (ao*/x_“?)*/x)z =(a1 ~a3)’ = ap/k —agh =
=+(a; —ag);

ii) (aO\/X+a3\/X)2 =( +a2)2 = ag\ +ag/h =
=+(ay +ay).

Sets of coordinates (a,, a,, ay, a3) satisfying one
of four conditions defined by the said two cases rep-
resent non-invertible vectors. The following Table 2
shows the number of vectors coordinates of which
satisfy a condition indicated in the left column.

Totally, we have

n:pz+p2+2p(p—1)2+2p(p—1)2 =
=4p3-6p®+4p-1.

Proposition 3 is proven.
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B Table 2. Number of non-invertible vectors relating to
different subsets for the case when A is a quadratic
residue

# of different combinations
of coordinates (ay, a;, ay, as)
satisfying the condition
at the left

Condition

agh —agA =a; —a3 =0 | p?including (0, 0, 0, 0)

agh +ag\h =a; +ay =0 p?including (0, 0, 0, 0)

ag 2 —agVh =+(ay —ay)#0 2p(p - 1)?

ag\n +agh =+(a; +az)#0 2p(p — 1)?

Proposition 4. Suppose the structural constant A
is a quadratic residue in GF(p). Then the order of the
multiplicative group of the FAA set by the Table 1 is
equal to Q=(p — 1)%.

Proof: Among p* different vectors of the algebra
you have 1 = 4p3 — 6p2 + 4p2 — 1 non-invertible ones,
therefore Q = p* — n = p* — 4p3 — 6p2 + 4p2 — 1) =
= (p - D% Proposition 4 is proven.

Thus, if the structural constant A is equal to a
quadratic residue modulo p, then the multiplicative
group of the considered algebra has order (p — 1)*
and possesses four-dimensional cyclicity [16]. If
the structural constant A is equal to a quadratic
non-residue modulo p, then the multiplicative group
of the considered algebra has order (p2 — 1)2 and
possesses two-dimensional cyclicity [16].

In the developed signature scheme, it is assumed
that the first commutative FAA is set by Table 1,
where A is equal to a quadratic residue, and the char-
acteristic of the field GF(p) is a prime having the
following structure p = 2¢g + 1 with 256-bit prime q.
In this case the integer ¢ divides p — 1 and one can
generate a minimum generator system <G, Q>,
where G and Q are vectors of the order ¢, which sets
a two-dimensional cyclicity subgroup of order ¢2.

We also use another commutative FAA possess-
ing the properties similar to that of the algebra set
by Table 1. The second used commutative FAA is
set by basis vector multiplication table represent-
ed as Table 3, where A is equal to a quadratic res-
idue, and includes the unit vector E = (0, 0, 0, 1).
Consideration of the number of invertible vectors
in the second commutative FAA shows that for the
latter the Propositions 1 to 4 are also true. Thus, we
have two different commutative FAAs multiplica-
tive group each of which possesses four-dimension-
al cyclicity. The latter group contains a large num-

N\
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B Table 3. Setting the second used FAA (A = 0)

€0 € €2 €3
e heg e, hey e
€ €2 €3 €o €
e, rey e, Aeg e,
eg e e e, e;

7

ber of two-dimensional cyclicity subgroups of the
order ¢2.

Example 1. In the case of the first FAA with
p=2q+1=307771779467 (prime g =153885889733)
and A = 3 (quadratic residue) one can select the fol-
lowing minimum generator system <G, Q, H, V>
setting a prlmary group I' g quy- Of the order
Q. =qt= = 5607834646621019342722268060
80639851841841521

G=(0,0,3,0;Q=(0,2,5,0;H=(2, 7, 3, 0);
V=(183, 12, 10, 17).

For A = 2 (quadratic non-residue) one can se-
lect the following minimum generator system
<G, Q> setting a primary group I'_g o. of the order
Q go-=9 q? 94723468236283682804089
G=(0,0,3,0)and Q=(0, 1, 2, 0).

Example 2. In the case of the second FAA
with p =2¢ + 1 = 273413518347119 (prime ¢ =
= 136706759173559) and A =2 (quadratic residue) one
can select the following minimum generator system
<G, Q, H, V> setting a prlmary group I'_g q g of
the order Q_g =qt= = 34926892817234073926
007473842204106 8655028853953782643361

G=(0,0,0,2);Q=(0,0,1,2; H=(0, 1,4, 7);
vV=(,3,7, 10).

For L = 13 (quadratic non-residue) one can se-
lect the following minimum generator system
<G, Q> settlng a primary group I'_g . of the order
Qgo-= g2= 18688738003737457800684726481
G =(0, 189, 0, 222) and Q = (0, 0, 0, 2).

Consider a method for generating a minimun
generator system of a two-dimensional cyclicity
subgroup of order g2. The following procedure out-
puts a random vector of the order ¢:

1. Generate a random vector R and compute the
vector Q = R2.

2. If Q # E, then output Q. Else go to step 1.

The next probabilistic procedure outputs the
minimum generator system:

1. Generate a uniformly random vector G of
prime order q.

2. Generate a uniformly random vector Q of or-
der q.

The multiplicative group of the algebra con-
tains ¢4 — 1 vectors of order g. The cyclic group
generated by the vector G includes ¢ — 1 vectors
of order ¢, therefore, probability that the vector
Q is an element of the cyclic group generated by
the vector G is equal approximately to ¢~3. In an-
other case the pair of vectors <G, Q> represents a
minimum generator system of a primary subgroup
of order ¢2 that is contained in the multiplicative
group of the algebra. For the case of 256-bit prime
g the probability ¢~3 that the latter procedure fails
is negligible.

A new HDLP-based signature scheme

In the developed signature scheme a 256-bit col-
lision-resistant hash function f;; is assumed to be
used. Computation of the public key is proposed as
the following procedure.

Public-key generation algorithm.

1. Generate at random a minimum generator
system <G, Q> of the group of order ¢2, which is
contained in the first commutative FAA.

2. Generate at random integers y; <gq, y, <gq, and
o < p, where a is a primitive element in GF(p). Then
calculate the vector Y = GY1Q"2q..

3. Generate at random integers z; <g, z, < g, and
B < p, where B is a primitive element in GF(p). Then
calculate the vector Z = G*1Q*2.

4. Generate at random integersy <p, u; <g, and
uy < g, such that non-equality z;u, # 2,1, holds true
and yis a primitive element in GF(p). Then calculate
the vector U = G*1Q%2y.

5. Generate at random a minimum generator
system <H, V> of the group of order ¢2, which is
contained in the second commutative FAA.

6. Calculate the vectors Y' = HY1V¥2q, Z' =
and U’ = H“1V“2y,

7. Output the public key in the form of two tri-
ples of vectors: (Y, Z, U) and (Y, Z', U").

In the developed signature scheme, we use the
idea of doubling the signature verification equation
connected with doubling the public key. Therefore,
the triple (Y, Z, U) will be called in this paper the
first public key. Respectively, the triple (Y’, Z', U’)
will be called the second public key. Each of the
public keys has been calculated with using the same
private key representing nine 256-bit integers (y;,
Yar O, 215 29, P, Uy, Uy, V) and the same formulas.
The first (second) public key is computed in the
first (second) commutative FAAs. The size of each

HA V2B,
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of public keys is equal to 384 bytes, and the size of
doubled public key equals to 768 bytes.

The vectors G, Q, H, and V are secret, but the
developed signature scheme offers the possibility
to choose one of two signature generation proce-
dures. In the first one, only four exponentiation
operations are executed in FAAs, however, the
vectors G, Q, H, and V must be stored by the own-
er of the public key (the person who generated the
public key) as additional elements of his private
key. In this case the size of private key is equal to
704 bytes.

In the second version of the signature generation
procedures, six exponentiation operations are to be
performed in FA As, but the vectors G, Q, H, and V
are not needed and the set of nine integers (y;, y,,
o, 21, 29, B, Uy, Uy, ¥) represent the full private key
having the size equal to 192 bytes.

Usually, finding the integer x satisfying the
exponential equation Y’ = G'¥*, where Y' and G’ are
known group elements, which is set in a finite cyclic
group is called discrete logarithm problem. If one
of the elements Y’ and G’ or both of them is not di-
rectly given, then we have a number of problems we
call HDLPs. Different forms of the HDLP are con-
sidered in [9, 15]. The HDLP form exploited in the
present paper is defined as follows:

Given a triple of vectors (Y, Z, U) contained in
the first FAA and a triple of vectors (Y', Z', U’) con-
tained in the second FAA. Find the set of integer
powers (Y;, Y, 21> 29> Uy, Ug) and the set of scalars
(o, B, y) such that equations Y = GY1Q%2a., Z = G*1Q°2f,
U = G"“1Q"2?y (in the first FAA), Y = HYIVW2q,
Z' = H*'V?2B, and U’ = H“'V“2y (in the second FAA)
hold true for i) some secret vectors G and Q generat-
ing two different cyclic groups of prime order ¢ in
the first FAA; ii) some secret vectors H and V gen-
erating two different cyclic groups of prime order ¢
in the second FAA.

One can easily show that, due to using random
vectors G and Q (H and V) and scalar multiplica-
tions, the vectors Y, Z, and U (Y, Z' and U’) com-
pose a basis of a three-dimensional cyclicity group
in the first (second) FAA. Therefore the vector Y
(Y’) cannot be represented as a product of some pow-
ers of the vectors Z and U (Z' and U’) and a periodic
function set on the base of the known parameters
has periods defined by the order of the public key
elements, i. e., by the prime ¢. The latter means that
the Shor quantum algorithm [5] is not applicable to
find one of the values y, y5, 21, 29, Uy, and u,,.

The said computationally complex problem un-
derlying the developed signature scheme is a new
one and currently the authors have no proposal for
solving it (except exhaustive search). However,
the importance of finding effective solutions al-
lows us to hope that this article will stimulate
independent researchers to address this issue.

\ SALLNTA MHDOPMALLAN N\

At the moment, the authors expect that choosing
a 256-bit prime number g will provide a 128-bit
level of security for the proposed signature algo-
rithm.

The first signature generation algorithm.

1. Generate three uniformly random integers
k<gq,t<gq,andp <p.

2. Calculate the vector R = G*¥Q?p.

3. Calculate the vector R’ = H*V?p.

4. Compute the first signature element e that is a
hash-function value calculated from the document
M to be signed, to which the vectors R and R’ are
concatenated: e = f;(M, R, R').

5. Interpreting the hash value as a 256-bit bina-
ry number e, calculate the second s and third d sig-
nature elements, which represent the solution of the
following system of two linear equations:

{zls+u1d=k—ey1 mod ¢q )

298 +Usd =t —eys mod g

It is easy to get the following formulas for com-
putation of the second and third signature elements:

s:uz(k—eyl)—u1(t—ey2)

mod g; (6)
21U —2Ug
2 (t—e —29(k—e
d= 1( yz) 2( yl)modq. )
21U —2Ug

6. Compute the fourth signature element o =
— pa—eﬁ—sy—d.

The output signature is four 256-bit numbers
(e, s, d, o) with total size equal to 128 bytes.

The second signature generation algorithm.

1. Generate four uniformly random integers
a<q,b<q,c<gq,andp <p.

2. Calculate the vector R = Y?ZPU¢p.

3. Calculate the vector R’ = Y'?Z'bU’p.

4. Compute the first signature element e that is a
hash-function value calculated from the document
M to be signed, to which the vectors R and R’ are
concatenated: e = f;(M, R, R').

5. Interpreting the hash value as a 256-bit bina-
ry number e, calculate the second s and third d sig-
nature elements, which represent the solution of the
system (5) and can be computed by formulas (6) and
(7), substituting the following values of the rand-
omization integers k and ¢:

k=ay; + bz, + cu; mod g and
t=ay, + bzy + cuy mod q.

6. Compute the fourth signature element c =
— paa—eBb—syc—d.

The main contribution to the computational
complexity of the signature generation procedure
is introduced by the exponentiation operations.
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The exponentiation in each of the four-dimen-
sional FAAs takes about 6144 multiplications
in GF(p). One exponentiation in GF(p) takes on
the average about 384 multiplications. One can
roughly estimate the execution time of the first
and second signature generation procedures as
25728 and 38016 multiplications in GF(p), corre-
spondingly.

The signature verification algorithm.

1. Calculate the vector R* = YeZsUd%.

2. Calculate the vector R'* = Y'*Z'sU"4G.

3. Compute the hash-function value from the
document M to which the vectors R* and R'*are
concatenated: e* = f,(M, R¥*, R'%).

4. If e* = e, then the signature is accepted as a
genuine one, otherwise the signature is rejected as
a false one.

One can roughly estimate the computational
complexity (execution time) of the signature verifi-
cation procedure as six exponentiations in the used
four-dimensional algebras or as 37248 multiplica-
tions in GF(p).

Signature scheme correctness proof.

To prove correctness of the introduced signature
scheme, consider a signature (e, s, d, ) computed in
full correspondence with the first signature gener-
ation procedure when using the correct signer’s pri-
vate key. When, submitting the signature (e, s, d, o)
to the input of the verification procedure, we have
the following proof of the correctness of the pro-
posed signature scheme with the first signature
generation algorithm [take into account formulas
in the system (5)]:

R*=Y’Z’U% =
= GY1Q%Y2 0 G5 Q%2 BsGdul Qdu2 de _
— Gt +du; Qeyz +829+duy (xeﬁsydc _

Gt (kem)Qevatt=ev) yeps, d ) —ep=s,—d _

kot
=G"Q p=R;
R!* — Y!@z!SU!dG —
—HY V2 o CHSA V522 Bstul Vdu2 ch _
—H TR +duy VY252 +duy 0LeBsde _

— g tEen)yevet(t-en) yegs, d o —eg=s,~d _

— Hkth — R!;
{R*=R;R*=R}=e*=e.

The final equality means the input signature
passes the verification procedure as a genuine
signature, i. e., the signature scheme performs
correctly. The correctness proof of the signature
scheme with the second signature generation algo-
rithm is similar to the presented one.

7

Discussion

The fact that the same signature satisfies two
similar, but different, verification equations is en-
sured by the same pairs of powers (y;, y,), (21, 25),
and (u;, u,) and the same multipliers a, B, and v,
which are used to compute the corresponding ele-
ments of the first (Y, Z, U) and second (Y', Z', U’)
public keys. The public keys are computed after se-
lection random minimum generator systems <G, Q>
(in the first FAA) and <H, V> (in the second FAA)
which are secret. Every of the element of the first
(second) public key is calculated as an element of
the two-dimensional cyclicity group I' g - (I ggv-)s
which is multiplied by a random scalar. After sca-
lar multiplication we get with a high probability a
vector outside the group I' g o. (I y-)- Thus, the
elements of the first (second) public key are not ele-
ments of the group I' g o. (I gy y-)-

Suppose a vector W is an element of the group
I'_g g The problem of finding the powers w; and
w, such that W = G*1Q*2 is called discrete loga-
rithm problem in a two-dimensional cyclicity group
I _g,q-- In this paper we assume that a potential
signature forger can efficiently solve this problem,
i. e., if a minimum generator system is given, then a
forger can efficiently express any group element as
product of some powers of two generators.

Consider an arbitrary minimum generator sys-
tem <G;, Q;> of the primary group of order g2 in
the first algebra. The forger can generate random
integers o, B;, v; and efficiently compute the values
(Yi1> Yiz» 2110 Zi9> Usp» Uso) such that Yo, ! = G/11Q,Yz2,
ZB, 1 = G;1Q/2, and Uy, ! = G;“1Q;“2. Then, using
the formulas (6) and (7), he can compute a signature
satisfying the first verification equation. However,
this signature will satisfy the second verification
equation only if the primary group of order ¢2 of
the second algebra contains a minimum genera-
tor system <H,, V,> such that Yo, = HY1Vyz2,
Z'B, ! = H"V*2, and Uy, = H“1V*2, However, in
fact, the fixed four values (y,;, Y;9, 21> 2;9) define
one minimum generator system <H,, V> (that can
be supposedly computed) such that Yo, = HY1V Y2
and Z'f;1 =H;*1V?2, For the fixed values of the vec-
tors H; and V, one will get Uy, ! = H,*"V,*2, where
the values u';; and u';; are random. Since the first
and second commutative FAAs are independent,
the equalities u';; = u;; and u';5 = u;5 of two pairs of
256-bit numbers can take place only at random with
probability about 27512,

Therefore, we expect that the signature forger is
unable to find efficiently the required alternative
pair of vectors <G;, Q,> or to guess the secret ele-
ments <G, Q>. A quantum computer will not pro-
vide much help to the forger, since the discrete log-
arithm problem that arises is hidden (the “bases” of
logarithms, i. e., <G, Q> and <H, V> are unknown).
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In fact, breaking the proposed signature scheme is
to find two minimum generator systems of two dif-
ferent two-dimensional cyclicity groups (contained
in two different FAAs) which are consistent with
each other. These two minimum generator systems
are connected by the mechanism of doubling the
verification equation, i. e., by a single digital signa-
ture, which must satisfy the verification equation
given in two different independent commutative
FAAs.

One can note, that the method [18, 19] of the re-
ductionist security proof that was applied to the
Schnorr signature algorithm [20] can be also ap-
plied to the proposed signature scheme. Indeed, an
assumption that a signature forger is able to calcu-
late a signature equally well for six different hash
functions leads to potential possibility to compute
the private key (y1, Y5, @, 21, 29, B> Uy, Ug, ).

Indeed, like in [19], suppose a potential signa-
ture forger can compute signatures for different
hash functions, when the values of the randomiza-
tion parameters are k, ¢, and p are fixed. For four
different hash functions he computes the signa-
tures (e;, 81, dy, 67, (€9, S9, dy, Gy), (€3, S3, d3, G3),
and (ey, S4, dy, 04). Then the signature forger com-
poses the following system of eight linear equations
with eight unknowns y, ys, 21, 29, Uy, Uy, k, and ¢
[see (B)]:

2181 +udy =k —ejy; mod g
2981 +Usd] =t —eys mod ¢
2189 +uyds =k —egy; mod g
2989 +Ugdy =t —egys mod ¢
2183 +uydz =k —egy; mod g
2983 +Ugdg =t —egzyy mod ¢
2184 +uydy =k—e4y; modgq

2984 + lL2d4 =t— eqYs mod q

Note, the probability that the main determinant
of his system of equations equals to zero is negli-
gibly small (g71). Solving the latter system one can
get the values of y,, y,, 21, 25, 4, and u,. It easy
to show that, using the formulas o, = pa¢5iy 4 for
i=1, 2, 3, 4 (see step 6 in the first signature gen-
eration algorithm) and finding roots from different
ratio values ,/c; in GF(p), one can calculate the val-
ues of scalars a, 3, and y. Thus, taking into account
that operations of finding roots in GF(p), where
p=2q+ 1, have polynomial computational complex-
ity, one can conclude that a polynomial algorithm
for forging a signature is reducible to a polynomial
algorithm of solving the HDLP underlying the in-
troduced signature scheme.

The above provides a general idea for construct-
ing a signature scheme and a general justification
for its resistance to attacks using conventional and

\ SALLNTA MHDOPMALLAN N\

B Table 4. Comparison with some known post-quantum
signature schemes

. . Rate of Rate of
. Signa- Public . .
Signature X . signature signature
ture size, | key size, . o ps .
scheme byte byte generation, | verification,
y 4 arb. un. arb. un.
Falcon 1280 1793 50 25
Crystals-
Dilithium 2701 1472 15 2
Rainbow 64 150 000 - -
[15] 192 768 50 80
[16] 192 512 40 80
Proposed 128 768 70 80

quantum computers. Detailed consideration of the
security issue and obtaining detailed estimates is a
separate independent task for the new study.

It is important that the proposed fundamen-
tally new method for setting the HDLP can be im-
plemented in numerous different ways. The most
obvious is the use of different pairs of finite asso-
ciative algebras. In particular, pairs of algebras of
different orders, different types and structures can
be used. In particular, is interesting to consider the
following versions:

i) one algebra is commutative and the other one
is non-commutative;

ii) one algebra is defined over a ground finite
field GF(p), and the other one is defined over a finite
extension of the binary field GF(2%).

The introduced design method opens up quite
wide possibilities for implementing various design
variants of digital signature schemes. The intro-
duced signature scheme suites well for software
implementation, since it uses only additions, mul-
tiplications, exponentiations and inversions (mod p
and mod ¢).

Currently, the NIST competition [21] for the
development of post-quantum public-key crypto-
systems has entered the final stage [22]. The final-
ists in the category of post-quantum signatures
were Falcon [23] and Crystals-Dilithium [24], and
Rainbow [25]. It is interesting to compare the pro-
posed signature scheme with the finalists and with
other HDLP-based signatures. A rough comparison
is presented in Table 4.

Conclusion

A new design method and a practical HDLP-
based post-quantum signature scheme have been
introduced. The proposed method is quite simple to
understand and has fundamental differences from
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other known methods of designing post-quantum
digital signature schemes. This reduces the com-
plexity of the further stage of a detailed study of
the security of the developed signature scheme.
Another important advantage of the proposed
method is that it opens up the possibility of devel-

7

oping a new class of practical post-quantum cryp-
tosystems. The latter is of particular importance
in the light of the widely conducted researches on
the development of post-quantum digital signature
standards.
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BBenenue: paszpaboTKa IPAKTUYHBIX ITOCTKBAHTOBBIX CXEM IOJNUCH ABJISAETCSA OJHUM U3 BHI30OBOB IPUKJIAAHON Kpunrorpadpuu. He-
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B KOMMYTATHBHOH IpyIe, 00J1ajaolneil MHOTOMEPHOU IIUKJINYHOCTBIO, M METO/Ia IIOCTPOEHU A IIOCTKBAHTOBBIX cXeM noxunucu. Pesyis-
TaThI: IPEJIJIOJKEeHA HOBasA (hopMa CKPBITON 3a/iaUy JUCKPETHOTO JIOTapu(MUPOBAaHUA B KauecTBe 6230BOT0 IPUMUTHUBA JJIA IPAKTUIHBIX
IMOCTKBAHTOBBIX aJITOPUTMOB ITUMPOBOI moxnrcu. IIpecTaBieHbl JBe HOBbIE YeThIpEXMEPHbIe KOHEUHbIe KOMMYTATUBHbBIE aCCOIUATUB-
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Introduction: The proliferation of services and applications requiring ultra-low latency and high reliability of data
transmission in communication networks leads to creating new approaches and architectures in order to ensure the
simultaneous transmission of Enhanced Mobile Broadband (eMBB) and Ultra-Reliable and Low Latency Communication
(URLLC) traffic. Providing efficient eMBB and URLLC multiplexing schemes with preset key performance indicators for each
stream is the most challenging problem in wireless network development. Purpose: To provide a simultaneous transmission
of eMBB and URLLC streams without reducing the user experience of eMBB services by developing a multiplexing scheme and
the coherent architecture of physical (PHY) and media access control (MAC) layers in the downlink channel. Results: An eMBB
and URLLC multiplexing scheme has been proposed, along with a coherent architecture for PHY and MAC layers, ensuring the
given wireless network key performance indicators. The proposed solution performance has been estimated by simulation. The
multiplexing scheme outperforms the baseline solution in Bit Error Rate and Frame Error Rate metrics. The coherent PHY and
MAC layers architecture provides transmission with an arrival rate of 400 messages per millisecond and 99% message delivery
probability in one millisecond. Practical relevance: The obtained results allow communication system developers to deploy
centralized wireless networks at industrial objects.
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Introduction

In just a few decades, wireless technology has
undergone rapid growth from its original concept
to ubiquitous penetration, which has changed our
daily lives and thinking. Wireless connection has
become an essential link between people and infor-
mation networks. The growing density of user de-
vices triggered an increasing demand for higher
capacity and network reliability. The constant in-
crease in traffic leads to congestion of base stations
and a decrease in service level quality.

An attractive solution to this problem is the mul-
tiplexing of data streams in the downlink. A sub-
stantial amount of in-depth research has been dedi-
cated to this topic.

In [1], authors consider various models for the
Enhanced Mobile Broadband (eMBB) rate loss as-
sociated with Ultra-Reliable and Low Latency
Communication (URLLC) superposition/punctur-
ing, for which we characterize the associated fea-
sible throughput regions and online joint schedul-
ing algorithms. The first model considered by the
authors is the linear model. When the rate loss to
eMBB is directly proportional to the fraction of su-
perposed/punctured mini-slot. The second model
considered was the convex model, where the rate
loss can be modeled through a convex function. And

the last model considered was the threshold model
where eMBB traffic is unaffected by puncturing
until a threshold. Beyond this threshold, it suffers
complete throughput loss.

There are also several papers describing a spe-
cific scheme for the coexistence of multiple data
streams. So, in [2], the authors introduced an ap-
proach for coexisting URLLC [3] and eMBB [4]
traffic in the same radio resource for enabling 5G
wireless systems. They have expressed the coexist-
ing dilemma as a maximizing problem of the min-
imum expected achieved rate value of eMBB user
equipment (UEs) meanwhile attending the URLLC
traffic.

Also, they presented a heuristic algorithm for
the efficient scheduling of resource blocks among
eMBB UEs. In [5], the authors considered approach-
es to data multiplexing based on machine learning.
In their work, they proposed an optimization-aid-
ed deep reinforcement learning-based algorithm,
which proposed to distribute the incoming URLLC
traffic among eMBB users intelligently. In [6], the
authors consider the optimization problem of maxi-
mizing the transmission rate of eMBB traffic, sub-
ject to URLLC requirements. To study the impact
of puncturing eMBB resources to accommodate
URLLC transmission, the authors in [7] investi-
gated the problem of joint planning of eMBB and
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URLLC data transmission according to linear, con-
vex, and threshold velocity stall models by eMBB
associated with the drilling of the eMBB resource.
In [8], a risk-sensitive approach was introduced to
mitigate the risk of puncturing into eMBB resourc-
es. A resource allocation planner was proposed in
[9], where the formulated problem considered the
overhead associated with URLLC load segmenta-
tion while maximizing speed utility. In [10], a null
space-based spatial perforation scheduler for joint
URLLC / eMBB traffic has been proposed. The au-
thors in [11] formulated a URLLC traffic alloca-
tion problem by adopting an overlay or perforation
scheme. In practice, when the URLLC service is
started in the middle of the eMBB transport block,
part of the eMBB symbols are replaced and/or over-
lapped with the symbols in the URLLC packet. As a
result, the reception quality of eMBB services can
be significantly reduced.

In [12], the authors also study the orthogonal
and non-orthogonal slicing of radio resources for
eMBB and URLLC using a maximum matching di-
versity (MMD) algorithm to locate frequency chan-
nels of eMBB users. In [13], the authors adopted a
time/frequency resource block approach to address
the problem of maximizing the sum rate subject to
latency and cutoff isolation constraints while en-
suring the reliability requirements using adaptive
modulation coding. In [14], the authors studied a
multi-cell scenario with a single-cell base stations
for an Ultra-Narrow Band and Low Power Wide
Area Network. Article [15] analyzes the use of
non-orthogonal multiple accesses (NOMA) for dif-
ferent URLLC devices. To achieve this, the authors
propose a NOMA sharing approach, successive in-
terference cancellation, and frequency diversity as
a solution to increase the number of URLLC de-vic-
es that can be connected to the same base station.
In [16], a new class of NOMA has been proposed,
namely bits similarity NOMA. It has been shown
that without a perfect successive interference can-
cellation, bit similarity NOMA can achieve better
efficiency between users than traditional NOMA
techniques.

Another approach to multiplexing URLLC and
eMBB traffic is Trellis- and Network-coded modula-
tion (TC-NCM) [17]. Based the Ungerboeck’s scheme
[18] and the general type of coset coding advocated
by Goldsmith in [19] and Chapter 8 of [20], the au-
thors propose adaptive TC-NCM structure, where
the transmitter adapts the coding rate and modu-
lation mode according to the channel estimates fed
back via feedback channels. The main disadvantage
of this method is the lack of encoding of the URLLC
stream, which negatively affects the reliability and
transmission rate of URLLC messages. This work’s
main task is to propose a Trellis-Coded Modulation
(TCM) scheme for multiplexing streams and define
the loss function for it. The remainder of this paper
is organized as follows. We commence by describing
the system model along with a system of assump-
tions. We then conceive our generic structure of
the multiplexing scheme, where the motivation, the
transmitter design, and the data flow are detailed.
Finally, we present some modeling results and con-
clusions.

Baseline system model

In this article, we discuss the development of the
model proposed in [21] generalized to the physical
layer of wireless centralized systems. As before, the
baseline scenario will be the case when only 1 data
stream is transmitted. However, in contrast to the
previous work [21], we will consider the Viterbi de-
coder’s quantized output — the general scheme for
basic scenarios presented in Fig. 1.

In the case of a multiplexing scenario, the net-
work contains a base station, as well as users receiv-
ing eMBB and URLLC traffic from the base station,
respectively. As in the previous article, the simulta-
neous transmission is considered data for different
recipients from one sender. Each data stream has its
own scheduler. The scheduler for eMBB traffic uses
time division multiplexing (TDM/TDMA), and the
scheduler for URLLC uses (OFDM/OFDMA) (Fig. 2).

For eMBB stream

eMBB
LDPC
encoder

AWGN
channel

eMBB

For URLLC stream

URLLC
LDPC
encoder

B Fig. 1. Baseline scenario

AWGN
channel

LDPC eMBB
decoder user
URLLC URLLC

LDPC

user
decoder
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B Fig. 3. Scheduling resources after using multiplex-
ing

After the allocation of the radio resource by the
schedulers, a multiplexing scheme is used, after
which the information bits of different streams are
located in the combined resource block for further
transmission over the channel (Fig. 3).

Assumptions

Having outlined the transmission model, next
we list all of our operating assumptions used
throughout this paper.

1. Channel state information is always available
on the sender. Assume that the feedback path does
not introduce any errors, which can be approxi-
mately satisfied, provided that sufficiently power-
ful error correction and detection codes are used on
the feedback path.

2. We are considering a channel with additive
white Gaussian noise.

3. We consider the downlink in TDMA mode for
eMBB data stream and OFDMA for URLLC data
stream.

4. We know on the receiving side of the URLLC
traffic transmission position for the user.

5. EMBB users are not aware of the existence of
URLLC traffic and do not decode it.

Multiplexing algorithm

It is known that the Ungerboeck scheme [18]
combines encoding and modulation by expanding
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the Euclidean distance between codewords and ab-
sorbs parity bits without bandwidth expansion by
doubling the number of points in the constellation
due to increasing the number of bits / symbols by
one. This design jointly optimizes both channel en-
coding and modulation, hence again, resulting in
significant encoding gains without any bandwidth
expansion. Based on these ideas, our adaptive
stream multiplexing scheme was developed.

Generic multiplexing scheme

At some point in time, an eMBB message and
several URLLC messages appear on this station.
Then the algorithm for multiplexing and transmit-
ting messages is as follows (Fig. 4):

1. A checksum is added to all messages.

2. Messages are fed to the LDPC encoding unit.
For eMBB traffic the code rate is 8/9, and for
URLLC traffic it is 1/2. This choice is due to the
fact that URLLC messages are shorter and more de-
manding on the reliability of transmission.

3. After LDPC encoding, the messages are com-
bined into one using an interleaver.

4. The general message is fed to the input of the
TCM, which selects the modulation dimension re-
quired to transmit (1 + r) symbols, where | — mes-
sage length; r — redundancy of the applied convo-
lutional code.

5. Then the message is transmitted over the
communication channel and enters the input of the
decoder, which is a soft output Viterbi algorithm.

6. The message is quantized according to the
following rule: the most significant log,(®) bits of
the Log-Likelihood Ratio are stored, where @ is the
number of quantization levels.

7. The codewords of each stream passes the
deinterleaver and LDPC decoder.

8. The checksum is checked, and a decision is
made on the correctness of the received message.

Key performance indicators of the system

To assess the quality of the proposed multiplex-
ing algorithm, it is necessary to introduce indica-
tors of efficiency. This article discusses the follow-
ing key performance parameters:

1) frame error rate (FER) for URLLC and eMBB
streams;

2) bit error rate (BER) for eMBB stream;

3) channel capacity for URLLC stream;

4) complexity of separating eMBB and URLLC
streams.

To evaluate the first two performance criteria,
we introduce the following notation 4, .and B,,. —
functions for the considered scenarios that return
the SNR (signal-to-noise ratio) value to achieve the
required BER value. 4, and B, — return SNR
value to achieve the required FER respectively.
Thus, we consider that system B is not inferior to
system A if:

B, (10°7) <= A,, (10°7);
B, (107%) <= A, (10~);

frequency bands of A and B are the same.

The channel capacity here means the ability to
transmit all URLLC messages in one time slot. The
following algorithm was used to calculate the chan-
nel capacity for the URLLC stream:

1. A set of messages is generated according to
the Poisson distribution.

Base Station

eMBB - eMBB N eMBB
stream ”| LDPC encoder 4 interleaver
— —_ TCM
and
Mapping rule
URLLC - URLLC - URLLC
stream ”| LDPC encoder interleaver
Y
AWGN
channel
User Equipment
—— EE—
eMBB P eMBB P eMBB P
stream B LDPC decoder [~ deinterleaver [
- @@ Soft
Output
Viterbi
Algorithm
URLLC P URLLC < URLLC P
stream h LDPC decoder deinterleaver |
- -

B Fig. 4. General scheme of the multiplexing algorithm
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2. The generated messages occupy slots in the
current time slot.

3. Messages that did not get free resource blocks
or were incompletely allocated are discarded and
replenished the message buffer that was refused
transmission.

4. Based on the number of discarded messages
and the total number, the probability is calculated
that the message will not be transmitted in 1 time
slot.

Stream splitting algorithm consists of two
parts: Soft-Output Viterbi Algorithm (SOVA) and
deinterleaver. The time complexity of the Viterbi
algorithm can be expressed as O(NS2), where N is
a length of message in bits, and S is a number of
states in a hidden Markov model.

The complexity of deinterleaving is equal to the
size of the message, so the overall complexity of
streaming can be considered equal to the complexi-
ty of decoding using the Viterbi algorithm.

System parameters
The 5G-NR standard implies the use of a differ-

ent number of templates with different network pa-
rameters (Table 1).

Each template allows you to adaptively configure
the physical layers of the system. Such templates
are called numerology, and, in this paper, we use
the numerology parameters under number 3 (see
Table 1). The structure of the frame is presented
in Fig. 5. This article considers the mm-Wave sce-
nario with 50 MHz cell and numerology 3. All-time
divided by subframes 1ms duration each. By numer-
ology 3, each subframe is divided into eight slots,
0.125 ms each. Thus, we can calculate the number
of available OFDM symbols for multiplexing in each
slot and subframe.

LDPC codes in the 5G-NR standard also have
many different parameters. The parameters used
in our system are shown in Table 2.

The main parameter of TCM is the use of convo-
lutional polynomial coding. In our work, we use the
polynomial presented by William G. Chambers [10]
(Fig. 6), since it provides the maximal possible free

B Table 2. LDPC parameters

B Table 1. 5G-NR numerology

Stream Code rate Reduncity level nlayers
eMBB 8/9 0 3
URLLC 1/2 0 3

Numerology values

Parameter
0 1 2 3 4

Subcarrier width,

KHz 15| 30 | 60 120 240

Num of slot in
subframe

Slot duration, ms 1 |0.5]|0.25| 0.125 | 0.0625

B Table 3. TCM parameters

Mapoi
Code Modulation apping

Octets | Memory d}c rate rule

Gray

117 155 6 10 | 1/2 :
mapping

QAM-16

Subframe 1 ms

—
Guard interval
Bandwidth y,
50 MHz . - -
L [ ] [ ]
Guard interval
-
<>
0.125 ms

B Fig.5. 5G-NR Numerology 3 frame structure

. Slot

. OFDM symbol

. 1 slot

1 subframe

Subframe

. 1 2 3 4 5 6 7 8 9 Frame

\ 4

10 ms
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Go— 1 0 0 1 1 1 1 117 (octal)
Y
Go
X—> 6 5| 4| 32|10
Gy
A
G, — 1 1 0 1 1 0 1 155(octal)

B Fig. 6. Convolutional code

B Table 4. Coding gain

Stream R=2 | Q=4 | Q=16 | @=256

eMBB, FER = 102 2.5 0.8 0.7 0.3

eMBB, FER = 104 2.6 0.5 0.5 0.3

URLLC, FER =105 - - - -0.5

URLLC, FER = 1076 - - - 0.5

distance d)) and so the maximal asymptotic coding
gain. The parameters of the selected polynomial are
shown in Table 3.

Simulation results

Using the parameters described above, the FER
versus SNR plots were obtained using simulation
for both data streams (Fig. 7, a and b).

It can be seen from the figures above that due
to the complication of the decoding procedure when
multiplexing streams, the FER values for all quan-
tization levels exceed the FER values for the base-
line scenario.

Let us consider the efficiency of the multiplexing
algorithm in terms of BER for the eMBB stream.

Fig. 8 shows a plot of BER versus SNR for different
quantization levels.

Table 4 shows the gain in dB when using
multiplexing for different quantization levels.

URLLC stream capacity

Since the URLLC stream must fulfill the re-
quirements of immediate transmission, we will as-
sume that if the message was not transmitted per
1ms subframe, then it loses its relevance for the end
user. Fig. 9 shows the probability of non-transfer
URLLC messages with a length of 100 bits per 1 ms
subframe for the considered multiplexing scenar-
io (see simulation details in [21]). We can conclude
that the probability of sending a URLLC message in
one mini-slot more than 99% for an incoming rate
of up to 400 messages per slot.

Thus, the proposed downlink multiplexing
scheme using TCM allows to obtain a lower error
probability in the channel for eMBB traffic, as well
as to preserve the key parameters of the efficien-
cy applied to URLLC traffic. The proposed scheme
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AR WA
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b A Y | \
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B Fig.7. FER versus SNR for eMBB (a) and URLLC (b) stream
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can be classified as a threshold model by [1], and all
known results can be applied to ours.

Conclusion

This article proposed an algorithm for multiplex-
ing data streams in the downlink communication of
centralized wireless networks. This algorithm fits
the threshold model proposed by Veciana G. Then,
a general scheme based on TCM was considered and
applied to 5G-NR Numerology 3 networks. Our sim-
ulation results show that the proposed algorithm
achieves better BER and FER performance for the
eMBB stream compared to the baseline scenario

without multiplexing. We also presented graphs
of the channel throughput for the URLLC stream,
from which it can be seen that this scheme allows
providing the probability of sending a URLLC mes-
sage in one mini-slot more than 99% for an incom-
ing rate of up to 400 messages per slot. For promis-
ing future research, an attractive direction is the
study of achievable improvement in constellation
formation, improving system performance.
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BBenenmne: pacrpocTpaHeHne CEPBUCOB U IPUJIOYKEHUH, TPEOYIOMNX CBEPXHU3KOM 3aIeP/KKU 1 BHICOKOU HAZE@)KHOCTH IIepeJayu JaH-
HBIX B CETSX CBS3U, IPUBOAUT K HEOOXOAUMOCTH CO3LaHUS HOBBIX IIOJXOJ0B U aPXUTEKTYD /A 00eclieueHUsA OJJHOBPEMEHHON nepefayun
PasHOPOAHOTO TpadUKa yIYUIIeHHON IITNPOKOII0JocHOH cBsa3u (eMBB) u cBepxHage:xkHo# cBaA3u ¢ Huskumu 3agep:kkamu (URLLC). Ox-
HOM 13 caMBbIX aKTyaJIbHBIX 3aa4 B 001aCTH pa3paboTKU CTAHAAPTOB 6€CIIPOBOJHOM CBA3Y ABJIAETCA 06ecIieueHre MYJIbTUILIEKCUPOBAHUA
notokoB eMBB 1 URLLC ¢ TpefyeMbIMU OKa3aTeJAMU IPOU3BOAUTEIBHOCTH IEPEJaun Kaskaoro moroka. Ileas: obeceunTs 0HOBpPE-
MeHHYI0 nepenauy moTrokoB eMBB u URLLC 6e3 moTeps mo1530BaTeIbCKOr0 onbiTa cepBrucoB eMBB nmyTem cosmanusa MeToa MyJIbTHILIEK -
CHUPOBaHUA IIOTOKOB JAHHBIX HA OCHOBE PEIIeTUATOr0 KOJUPOBAHUA M MOAYJIAIUYM CUTHAJA, & TAK)KEe COOTBETCTBYIOIIYIO HACTOAIEMY
METOAY apXUTEKTYPy (GU3UUECKOr0 M KaHAJIbHOTO YPOBHEH GECIIPOBOJHBIX IEHTPATN30BaHHBIX CeTeil cBA3U. Pe3yabTaT: mpeiosKeHbl
MeTOJ MyJIbTUILIeKCcUupoBaHuA OoTOKOB AaHHbIX eMBB 1 URLLC B HUCXOAAIEM KaHaJIe CBA3U, a TAK)Ke COTJIACOBAHHASA C HUM apXUTEK-
Typa (pM3UYeCcKOro u KaHAJIbHOTO YPOBHEH ceTell, I03BOIA0IIe 00eCIeYnUTh 3afaHHbIe TPe6oBaHUA (DYHKIIMOHUPOBAHUA 6€CIIPOBOJHOM
cetu. OneHKa 3(PGHEKTUBHOCTH IIPEICTABIEHHOTO PEIIeHUA IIyTeM UMUTAIIMOHHOTO MO/JIEIMPOBAHUS JaeT BOBMOKHOCTD CleJIaTh CIeIyI0-
e yTBep:KAeHusa. Pa3dpaboTaHHBIM METO MyJIbTUILJIEKCUPOBAHUSA 00€CIIeUNBAET JIYUIIINe 3HAUeHU A BEePOATHOCTeI OITMOKY Ha OUT 1 Ha
KOJI0BOE CJIOBO B CDAaBHEHUHU C OIOPHBIM CIleHapmeM Ha GusmuecKoM ypoBHe. IIpensioskeHHas apXUTEKTypa KAHAJIBHOI'O YPOBHSA II03BO-
Jasetr obecneuuTs nepepavyy noroka URLLC ¢ naTeHcuBHOCTHIO 400 COOOIIEHNIT B MUJIIUCEKYH/Y C BEPOATHOCTHIO TOCTABKYU COOOIIEHNS,
paBHOiT 99% , B TeueHMe OJHOM MUJLINCEKYHbI. IIpaKTHUYecKass 3HAUMMOCTH: ITOJIyUYEeHHBIE Pe3yIbTaThl IOMOTYT Pa3paboTUNKAM CHUCTEM
CBA3Y IJIAHNPOBATH PA3BEPTHIBAHUA O€CIIPOBOJHBIX IEHTPATIN30BAHHBIX CETEH B IPOMBINIIEHHOCTH.

Kiarouessie cioa — URLLC, eMBB, myabTuIlLIeKCUPOBaHUe, IIJIAHNPOBaHNE, 6€CIPOBOIHbIE [EHTPAJIU30BAHHEIE CETH, PEIleTuyaToe
KoxupoBaHue u Mmoayaanusa, LDPC.
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Introduction: Magnetic stations are one of the main tools for observing the geomagnetic field. However, gaps and anomalies
in time series of geomagnetic data, which often exceed 30% of the number of recorded values, negatively affect the effectiveness
of the implemented approach and complicate the application of mathematical tools which require that the information signal
is continuous. Besides, the missing values add extra uncertainty in computer simulation of dynamic spatial distribution of
geomagnetic variations and related parameters. Purpose: To develop a methodology for improving the efficiency of technical
means for observing the geomagnetic field. Method: Creation of problem-oriented digital twins of magnetic stations, and their
integration into the collection and preprocessing of geomagnetic data, in order to simulate the functioning of their physical
prototypes with a certain accuracy. Results: Using Kilpisjarvi magnetic station (Finland) as an example, it is shown that the use of
digital twins, whose information environment is made up of geomagnetic data from adjacent stations, can provide the opportunity
for reconstruction (retrospective forecast) of geomagnetic variation parameters with a mean square error in the auroral zone of up
to 11.5 nT. The integration of problem-oriented digital twins of magnetic stations into the processes of collecting and registering
geomagnetic data can provide automatic identification and replacement of missing and abnormal values, increasing, due to the
redundancy effect, the fault tolerance of the magnetic station as a data source object. For example, the digital twin of Kilpisjérvi
station recovers 99.55% of annual information, and 86.73% of it has an error not exceeding 12 nT. Discussion: Due to the spatial
anisotropy of geomagnetic field parameters, the error at the digital twin output will be different in each specific case, depending on
the geographic location of the magnetic station, as well as on the number of the surrounding magnetic stations and the distance to
them. However, this problem can be minimized by integrating geomagnetic data from satellites into the information environment
of the digital twin. Practical relevance: The proposed methodology provides the opportunity for automated diagnostics of time
series of geomagnetic data for outliers and anomalies, as well as restoration of missing values and identification of small-scale
disturbances.

Keywords — digital twins, time series reconstruction, statistical analysis, geomagnetic data, magnetic stations.
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Introduction Outliers, gaps in time series, noise and other

anomalies are widespread and still not having a fi-

Today, magnetic observatories and variation
stations are among the main instruments for ob-
serving the geomagnetic field (GMF) and its vari-
ations. There are more than 300 ground magnetic
stations that record the parameters of the GMF in
real time mode. Usually, these magnetic stations
are integrated into networks, which for the da-
ta consumers are represented as the specialized
web-services that provide access to geomagnet-
ic data and have the functionality necessary for
their search, preview and download. By the end
of 2020, more than 20 such networks of magnet-
ic stations are known, the largest of which are
INTERMAGNET, IMAGE, CARISMA, MACCS,
MAGDAS, etc.

nal solution to the problem on the way of process-
ing the received geophysical information. Even for
magnetic observatories of the INTERMAGNET
network [1, 2], which maintains the highest quality
standard, the lengths of the missing fragments oc-
cupy a fairly wide range and vary both in time and
from station to station. For example, in 2015 the
quantity of missing values for station AlmaAta was
36% of the annual operating time, for station Dalat
it was more than 12%, for station Sodankyla it was
0.4%, etc. [3].

Multiple anomalies in time series (occurring
as a result of measurement errors, registration
or noisy information signal), in addition to nega-
tively affecting the efficiency of the implemented
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approach to monitoring GMF, also complicate the
use of software elements that require compliance
with the condition of information signal continuity
(calculation of the derivative, Fourier transform,
wavelet transform, etc.). In addition, the missing
values complicate the problems of computer mod-
eling of the dynamics of the spatial distribution
of GMF variations [4, 5] and associated high-level
experimental information (indices of geomagnetic
activity, perturbation maps, magnetic keograms,
etc.) [6].

Until recently, the reconstruction of the GMF
observations results was provided by using a linear
interpolation or a cubic spline, which is generally
acceptable to recover the single gaps, but absolute-
ly unsuitable for imputing long-term fragments.
Today more complex approaches to the reconstruc-
tion of this type of time series are known. They are
based mainly on analytical processing of data in
the vicinity of missing fragments, analysis of peri-
odic and seasonal components, as well as the study
of Fourier and wavelet spectra of the information
signal [7—11]. Usually all of them can be used to re-
construct the missing fragments, which size does
not exceed several tens of minutes. The methods
provide a methodological error within 15%, require
significant computing power, direct human partic-
ipation and, as a result, are not applicable to large
amounts of data. Thus, the existing practice of
collecting and registering geomagnetic data using
ground magnetic stations is connected with a num-
ber of difficulties and limitations, which largely
impede the effective conduct of geophysical/helio-
geophysical research.

A promising approach to solving the prob-
lem can be the creation and integration the prob-
lem-oriented digital twins (DT) of magnetic sta-
tions into the process of collecting geomagnetic
data. The DT allow with a certain accuracy (at the
data consumer level) to simulate the work of their
physical prototypes [12, 13]. The implementation
and development of the proposed concept can sig-
nificantly increase the efficiency of the operation
of separate magnetic stations, as well as reduce
the labor intensity of preliminary processing of
geomagnetic data.

Analysis of gaps in time series

of geomagnetic data and assessment
of reliability indicators of ground
magnetic stations

An experimental set is provided by the minute
data of the IMAGE magnetometer network (https://
space.fmi.fi/image/) [14] for 2015, that is the peri-
od corresponding to the maximum activity of the
24th solar cycle (January 2009—May 2020).

Table 1 describes the results of assessing the
completeness of the time series of 36 stations, where
the appearance of a missing value is regarded as
a failure of a technical object, i. e., its transition
to an inoperative state (State Standard 27.002-
2015). Hence, the total idle time TF of the station,
corresponding to the number of missing values in
the time series, is determined as follows:

Ty =T -Ty, (€]

where T is an operating time; T, is a number of
informative values (total uptime) for a time pe-
riod T.

The average time to recover the operating state
(equivalent to the mathematical expectation of the
missing fragment size) and the average time to fail-
ure of the system (equivalent to the average size of
the fragment without gaps) can be determined from
next expressions:

1 Xz T
T2R)=—> T2R, =——; 2
(T2R) szl R; N, @
(T2F)= 1 NwiszF.: Tw 3)
Ny +k 5 " Ny +k

where T2R; and T2F; are the time until the i-th
system recovery after a failure and the time
before the i-th system failure, respectively; Ny
and Ny, are the number of system failures and the
number of failover recoveries, respectively; £ =1
or k =0, if at the moment of observation beginning
the system was in a working or inoperative state,
respectively.

The analysis of gaps in the IMAGE network time
series demonstrated that in 50% of magnetic sta-
tions the expected value of the missing fragment
size exceeds 58.5 min. The averaged (over all sta-
tions) non-operational time is 1066 min/year. The
expected value of the number of failures with re-
covery for all stations exceeds 45 per year. At the
same time, 50% of stations experience more than
17 failures per year. In extreme cases, the total vol-
ume of missing fragments of one station can exceed
11.2% (more than 41 days) of the total size of the
annual sample, while the average recovery time can
reach 10 days or more.

The results indicate that the application of well-
known approaches to the reconstruction of time
series (linear interpolation, interpolation by cubic
splines, as well as the methods described in [7-11])
for most fragments of the missing values of the
sources considered here (mainly due to the size
missing fragment) is ineffective. In addition, if we
are talking about large amounts of information (the
results of observing the parameters of the GMF
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B Table 1. Assessment of reliability indicators of magnetic stations of the IMAGE network

Coordinates, degr.
LAT LON LAT LON min % min %
NAL 78.92 11.95 76.57 109.96 509551 96.947 16049 3.053 20 802.45 25477.55
LYR 78.20 | 15.82 | 75.64 111.03 506314 96.331 19286 3.669 11 1753.27 46028.55
HOR 77.00 | 15.60 | 74.52 108.72 466554 88.766 59046 11.234 4 14761.5 116638.5
HOP 76.51 25.01 73.53 114.59 492524 93.707 33076 6.293 49 675.02 10051.51
BJN 74.50 | 19.20 | 71.89 107.71 525523 99.985 7 0.015 7 11 75074.71
NOR 71.09 | 25.79 | 68.19 109.28 519087 98.761 6513 1.239 144 45.23 3604.77
SOR 70.54 | 22.22 | 67.80 106.04 523740 99.646 1860 0.354 43 43.26 12180.0
KEV 69.76 | 27.01 | 66.82 | 109.22 525569 99.994 31 0.006 11 2.82 47779.0
TRO 69.66 | 18.94 | 67.07 102.77 524713 99.831 887 0.169 15 59.13 34980.87
MAS 69.46 | 23.70 | 66.65 | 106.36 524144 99.723 1456 0.277 73 19.95 7180.05
AND 69.30 | 16.03 | 66.86 | 100.22 525284 99.94 316 0.06 6 52.67 87547.33
KIL 69.06 | 20.77 | 66.37 103.75 523732 99.645 1868 0.355 33 56.61 15870.67
IVA 68.56 | 27.29 | 65.60 | 108.61 486940 92.645 | 38660 7.355 6 6443.33 81156.67
ABK 68.35 | 18.82 | 65.74 101.70 525600 100 0 0 0 = =
MUO 68.02 | 23.53 | 65.19 105.23 492390 93.682 33210 6.318 359 92.51 1371.56
KIR 67.84 | 20.42 | 65.14 102.62 525577 99.996 23 0.004 13 1.77 40429.0
SOD 67.37 | 26.63 | 64.41 107.33 524905 99.868 695 0.132 12 57.92 43742.08
PEL 66.90 | 24.08 | 64.03 104.97 491992 93.606 | 33608 6.394 8 4201.0 61499.0
JCK 66.40 | 16.98 | 63.82 98.94 516366 98.243 9234 1.757 36 256.5 14343.5
DON 66.11 | 12.50 | 63.75 95.19 511710 97.357 13890 2.643 19 731.05 26932.11
RAN 65.90 | 26.41 | 62.92 106.30 519118 98.767 6482 1.233 130 49.86 3993.22
RVK 64.94 | 10.98 | 62.61 93.27 513440 97.686 12160 2.314 61 199.34 8417.05
LYC 64.61 | 18.75 | 61.87 99.33 525600 100 0 0 0 - -
oud 64.52 | 27.23 | 61.47 106.27 525304 99.944 296 0.056 11 26.91 47754.91
MEK 62.77 | 30.97 | 59.57 108.66 511795 97.373 13805 2.627 23 600.22 22251.96
HAN 62.25 | 26.60 | 59.12 104.72 520619 99.052 4981 0.948 381 13.07 1366.45
DOB 62.07 9.11 59.64 90.19 524128 99.72 1472 0.28 19 77.47 27585.68
SOL 61.08 4.84 58.82 86.25 512471 97.502 13129 2.498 31 423.52 16531.32
NUR 60.50 | 24.65 | 57.32 102.35 525540 99.989 60 0.011 30.0 262770.0
UPS 59.90 | 17.35 | 56.88 95.95 525600 100 0 0 0 - -
KAR 59.21 5.24 56.70 85.69 524637 99.817 963 0.183 41 23.49 12796.02
TAR 58.26 | 26.46 | 54.88 103.11 525137 99.912 463 0.088 12 38.58 43761.42
BRZ 56.17 | 24.86 | 52.66 | 100.97 523584 99.616 2016 0.384 3 672.0 174528.0
SUW 54.01 | 23.18 | 50.21 98.95 487904 92.828 | 37696 7.172 20 1884.8 24395.2
WNG 53.74 9.07 50.15 86.75 525577 99.996 23 0.004 19 1.21 27661.95
NGK 52.07 | 12.68 | 48.03 89.28 525600 100 0 0 0 - -

Note: GEO is a geographic coordinate system; CGM (Corrected GeoMagnetic) is a geomagnetic coordinate system; the
magnetic stations of the auroral cluster are highlighted in gray.
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for one year or more), then the application of meth-
ods, in the algorithms of which the participation of
a person is provided, also becomes very complicated.

Synthesis, modification and validation
of digital twin models

The physical prototype of DT is considered as a
magnetometric module that registers the northern
component (X-component) of the GMF vector at the
Kilpisjarvi (KIL) station. The research here is con-
sidered with spatial clustering of the entire set of
magnetic stations in order to identify the reference
data sources for subsequent modeling of the param-
eter.

Assessment of the spatial homogeneity of ge-
ographic objects based on the Moran’s index for
geographic proximity according to the metric [15]
revealed between a number of stations located in
the range of 66—71° N (see Table 1), the presence of
a positive spatial autocorrelation, which indicates
that these stations belong to the same spatial clus-
ter with KIL (hereinafter referred to as the “auro-
ral cluster”).

A comparative analysis of the correlations of
the northern (X) component of the geomagnetic
disturbance vector of the KIL station with similar
parameters of other stations of the auroral cluster
(Table 2), as well as a number of additional studies
[16, 17] confirmed the validity of the assumption
and indicate the possibility of using these data as
predicates (features) for modeling the parameter
Xkir,-

Estimation of the coefficient of determination
(R2 = 0.999) demonstrated that for the problem be-
ing solved, the approach based on the method of
multiple linear regression is the best. Linear re-
gression equation that allows to restore the value of

the desired parameter f(x, B) from the known values
Xy, -, X has the form:

k
f(2, B)=PBray + By +..ctPpay = D Bix; =X "B, (4)

=1

where xT = (x1, X9, ..., X) is a vector of regressors;

B= (B1> Bas - Bre )T is a vector column of coeffi-
cients; k is a number of model features.

Taking into account the data in Table 2, it is pos-
sible to define the expression (4) as follows:

X1, = a+B1 XNor +B2XNor +B3XNoR +
+B4XNor *B5Xmas +BeXanD +B7X1va +
+PBg X aBK +BoXmuo +P1oXKIR +
+PB11Xsop +P12XpEL +P13Xyck +B14Xpon> (B)

where o =418 nT is an ordinate offset; B;, B,
..., P14 are the coefficients calculated by the least
squares method: B; =—-0.0511992; B, = —0.0791793;
Bs =0.011932; B, =0.5858979; B =-0.2199333;
Bg=-0.203925; P,=0.1138129; B4 =0.6873423;
By = 0.0020214; B, = —0.2845333; B;; = 0.0170759;
B,s = 0.0152406; B, = 0.0037965; B,, = —0.0263773.

Mean squared error (MSE) of model (5), which
is calculated using the cross-validation procedure,
was 11.5 nT. This MSE corresponds to 0.51% of the
range of Xy parameter values for 2015. Pearson’s
correlation coefficient (» = 0.999) and the results of
Student’s t-test (statistical criterion ~ 0, p-value ~ 1)
indicate that the original (Xi;;) and synthesized
(Xky1) data are statistically indistinguishable and
belong to the same sample. However, the probabil-
ity of failure-free operation of model (5) is limited
by the probability of failure of at least one of the
stations included in the auroral cluster (see Table 1)
and, according to the available data, is 77.4%.

B Table 2. Correlations between Xy;; and a similar parameter of other stations

Magnetic stations included in the auroral cluster Magnetic stations not included in the auroral cluster
Code r Code r Code r Code r Code r
NOR 0.872 ABK 0.986 NAL —-0.164 LYC 0.642 UPS 0.218
SOR 0.933 MUO 0.957 LYR -0.129 ouJ 0.617 KAR 0.142
KEV 0.978 KIR 0.958 HOR 0.015 MEK 0.432 TAR 0.176
TRO 0.985 SOD 0.909 HOP 0.015 HAN 0.384 BRZ 0.098
MAS 0.99 PEL 0.875 BJN 0.427 DOB 0.363 SUW —-0.045
AND 0.987 JCK 0.845 RAN 0.053 SOL 0.262 WNG -0.017
IVA 0.975 DON 0.820 RVK 0.694 NUR 0.274 NGK —-0.044
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It is possible to increase the reliability of the DT
by modifying the model (5), for example, by using
the LASSO method [18, 19]. The method is con-
cerned with identifying the constraints of norm
of a vector of coefficients of the model, which will
lead to zero of some of its coefficients, i. e., in fact,
the exclusion of one or more stations from expres-
sion (5). Also, an important positive effect arising
from the use of the LASSO method is an increase
in the stability and interpretability of the model,
since, as a result, the features that have the great-
est influence on the response vector are selected. In
other word, at a zero value of the regularization pa-
rameter A, the LASSO regression is reduced to the
least squares (LS) method, and with its increase,
the formed model becomes more and more “laconic”
until it degenerates into the so-called null model,
which gives the same output for all possible inputs
[20]. This can be seen from the expression

2
n k
PrLasso =argmin Z{yl _ZBjxijJ +A[Bl|, (6)
B i=1 j=1
where y is an expected model response.

At A =1, it is possible to reduce expression (5)
to 3 terms (B3, By, P1g = 0), thereby increasing the
probability of the model triggering to 86.3%, while
practically without losing accuracy (MSE ~ 12 nT)
and maintaining the correlation parameters and
the statistical homogeneity of the original and syn-
thesized samples at the model level (5). It is even
more significant to increase the probability of the
model triggering, possibly excluding the maximum
number of terms from expression (5), while con-
trolling the constancy of the correlation parameter
and the Student’s t-test results, as well as keeping
the MSE in some acceptable range, for example,
MSE <30 nT.

However, according to previous experience, the
implementation of this operation by simply increas-
ing the parameter A is ineffective and leads to a
significant increase in the simulation error with a
relatively small decrease in the number of its terms.
In other words, further application of machine op-
timization methods (including ridge regression and
Elastic Net [21]) is impractical, and the subsequent
minimization of the number of features should be
done manually, for example, by pairwise compar-
ative analysis of the statistics of available pred-
icates. For this purpose, we exclude the baseline
from the time series of each station, normalize the
histogram and on the basis of by Kolmogorov —
Smirnov criteria select for the obtained samples
|AX]| the function that best approximates the distri-
bution of its values. The function, in turn, in addi-
tion to the homogeneity of general samples, may in-
dicate the homogeneity of the physical mechanisms

responsible for the appearance of disturbances at
the points of their observation [16]:

|AX; , ™M

= ‘Xij ~Me(X;)

j

where X ;jis thei-th value for j-th day of X-component
at the station; Me(Xj) is a sample median X for j-th
day; i and j correspond to the ordinal numbers of a
minute in a day (from 1 to 1440) and a day in a year
(from 1 to 365), respectively.

Analysis of the disturbed (i. e., in this case,
excluding the daily variations of the GMF)
X-components of the GMF at the KIL station
(|AX|gy;) absolute values distribution demonstrat-
ed that most of the sample values are distributed
according to the lognormal law (Fig. 1). However,
starting from the 95th percentile, an exponential
tail is observed, indicating that the variance of the
studied value is determined mainly by rare intense
(rather than frequent small) deviations, apparently
in this case due to substorm activity. Further re-
search demonstrated that the samples statistically
closest to [AX |k, are [AX|pro» 1AX|yas and [AX ]|y px,
which are the absolute values of the disturbed
components of the GMF X-component at stations
Tromsg (TRO), Masi (MAS) and Abisko (ABK). In
this case, almost the only difference is the sample
percentile corresponding to the beginning of the
exponential tail, which is apparently determined by
the latitudinal location of a particular station (see
Fig. 1, Table 1).

In addition, analysis of correlation between the
regional IL-index (the intensity of the western au-
roral electrojet, i. e., the horizontal current flow-
ing in the auroral region of the ionosphere) and the
X-component of the four stations identified (see Fig. 1)
revealed the proportionality of these correlations
(in each case, the Pearson correlation coefficient is
~0.7), which again indicates that the stations un-
der consideration are equally affected by the same
external factors. Thus, datasets including data of
TRO, MAS and ABK stations, are best suited for
modeling the desired parameter. In this case, ob-
viously, the minimum set of data sources can only
consist of these stations. Taking this into account,
expression (5) can be reduced to the following:

%
Xk, =0+ B4 XNor +B5Xmas +Bs XAk,  (8)

where o = 248.719 nT; B, = 0.2914795; B, = 0.286204;
Bg =0.4405047.

Figure 2, a represents the magnetograms of the
initial time series and time series reconstructed on
the basis of the regression model (8), which includes
one of the most powerful magnetic storms over the
past few years of observations. The dispersion of
the simulation results can be estimated from the

64 7 VHOOPMAUVIOHHO-YMPABASIOLLVIE CUCTEMEI

/7  N°2,2021



TRO_2015

o

-
(=]

—
O\
Do

-~
-
_——
———

PDF(AX])
)
A

—
O\
=]

-8
10 i ‘ i i i
800 1000 1200 1400 1600 1800
|AX], nT

0 200 400 600

KIL 2015

PDF( AX])

_8 E

10

0 200 400 600 800 1000 1200 1400 1600 1800
|AX], nT

B Fig. 1. Statistics of the disturbed geomagnetic variations:

NHDOPMAUNOHHBIE KAHAANALI 1 CPEAbI

PDF(AX])

PDF(|AX))

N\

MAS_2015

800 1000 1200 1400 1600 1800
|AX], nT

200 400 600

ABK_2015

0
0 200 400 600 800 1000 1200 1400 1600 1800
|AX], nT

red and blue solid (dashed) lines correspond to the proba-

bility density functions (survival) of the lognormal and exponential distribution laws, respectively; black solid line —
empirical survival function; PDF — probability density function

a) MVS Kilpisjirvi (KIL): 2015-I1I-(17..19)

11500 |

11000 1 M

W\ g A " .
& 105001 v 1 W i
10000 -
— X(MVS KIL)

9500 - ! —X*(DT MVS KIL)
II1-17 II1-17  I11-18 III-18 III-19 III-19 III-19
(00:00) (12:00) (00:00) (12:00) (00:00) (12:00) (23:59)

UTC

b) KIL 2015
o
11500
2 11000
2
X 10500
wn
=
£ 10000
>
9500 -
9500 10000 10500 11000 11500

X*(DT MVSKIL), nT

B Fig. 2. Verification of the digital twin of the station KIL: a — magnetograms of the initial time series; b — magneto-
grams of the time series reconstructed on the basis of the regression model

scattering diagram is demonstrated in Fig. 2, b. The
probability of triggering a DT based on model (8)
is 99.5%, and MSE < 30 nT (Table 3).

It should be noted that methods based on geospa-
tial interpolation may be a possible alternative, and
in some situations the only approach to creating a
DT. For example, according to the Inverse Distance

Weighting (IDW) method [22], the interpolated val-
ue of the parameter at a given geographical point
is determined by the weighted average sum of de-
terministic values in its vicinity. In the case of
Shepard’s modification [22], the level of influence
of the deterministic point on the desired value is set
by the exponent p and with distance from the top of
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B Table 3. KIL station digital twin model validation parameters

Student’s t-test
Model MSE, MSE, % r Ty, min Ty, min Py, %
nT
Statistic p-value

Expr. (5), LS 11.5 0.51 0.999 ~0 ~1 406936 118664 77.423
Expr. (5), LASSO 12.0 0.54 0.999 ~0 ~1 453819 71781 86.343
Expr. (8), LASSO 28.9 1.25 0.999 ~0 ~1 523257 2343 99.554
Expr. (9), IDW (p=3) 114.1 4.94 0.995 ~0 ~1 406936 118664 77.423

Note: Py, is the expected probability of the model being triggered.

the polygon, including the reference data sources,
its influence on the interpolated value weakens. For
the case under consideration, the ratio of the IDW
method is as follows:

x5 g: 1 / mo1 ©)
KIL — i ’
i=1 dip i=1 dip

where m is a number of stations in the auroral
cluster; d is a distance between the KIL station and
the i-th station of the auroral cluster; p is a weight
coefficient; X; is a value of X-component of i-th
station.

The disadvantage of the IDW method for inter-
polating geomagnetic disturbances is the assump-
tion that the disturbance field is isotropic in it.
However, here it should be taken into account that
latitudinal and longitudinal scales of most geomag-
netic disturbances differ significantly. Research
results have shown that in relation to the problem
under consideration, the MSE of the DT model built
on the basis of the IDW method monotonically in-
creases with decreasing p, which indicates that the
sought parameter is determined mainly by the data

of the stations closest to the modeled object. As a re-
sult, the modeling error by means of expression (9)
will be slightly higher than the MSE of the regres-
sion models (see Table 3). However, despite this, the
geospatial interpolation method can be useful in the
absence of a response vector, i. e., in the situation
when there is no physical prototype of the station.

Digital twin verification in frequency domain

Although variations in the GMF in the range of
periods of 2—12 min significantly inferior in inten-
sity to global geomagnetic disturbances — magnet-
ic storms and substorms — they are still extremely
important.

Disturbances in this frequency range (Pi3 /
Ps6 pulsations, Pcb waves, the beginnings of sub-
storms) lead to the most powerful bursts of geoin-
duced currents in power lines. Therefore, an im-
portant aspect in the functioning of the DT is the
identification and storage of information about
these disturbances. Let us select by means of the
Butterworth high-pass filter in the Xy; and X}’{IL

X_KIL (MVSKIL): 2015-ITI-(17..19)
7.0 :

6.0
5.0
4.0

3.0 — |

Frequensy, mHz

2.0 T

Lo 384 b :

I1-17 III-17 1III-18 1III-18 1III-19 III-19 III-19

b)

(00:00) (12:00) (00:00) (12:00) (00:00) (12:00) (23:59)

UTC

Frequensy, mHz

X_KIL (DTMVSKIL): 2015-I11-(17..19)
7.0 | 1 1

6.0
5.0 %
50 0 i

2.0%

1.0

II1-17 III-17 1III-18 III-18 II1-19

I1-19
(00:00) (12:00) (00:00) (12:00) (00:00) (12:00) (23:59)
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I11-19

B Fig. 3. Verification of the digital twin of the magnetic station KIL in the frequency range of 1-7 mHz: wavelet scalo-

gram of original (a) and recovered (b) time series
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Thus, from Fig. 3, a and b as well as from a num-
ber of similar tests for other fragments of the time
series, it follows that in the region of ultra-low fre-
quencies (with periods of 2-12 min), insignificant
(within the limits of the error stated in Table 3) de-
viations of the amplitude are observed, while the
spatial localization of frequency packets remains
practically unchanged.

Integration of the digital twin into the
process of collecting geomagnetic data

Figure 4 schematically demonstrates the model
of integration of the DT of magnetic station into the
processes of collecting and registering geomagnet-
ic data. So, according to the proposed scheme, the
disturbing effect x(¢) extends to the physical pro-
totype of the magnetic station (1) and a number of
reference data sources (2), involved in the base of
the DT models (3).

Depending on the number m of stations availa-
ble at the time ¢;, a model that provides the mini-
mum error is selected, by means of which the DT of
the magnetic station (1) generates the correspond-
ing value y,(¢;). Further, the data corresponding to
the state of the GMF at the i-th moment of time,
from the output of the DT and its physical proto-
type, are sent to the comparison device, which, by
comparing these values, makes a decision on reg-
istration as a measurement result or data from a
magnetic station, for example, based on the fulfill-
ment of the condition (10), or its DT (in cases of
its failure), while the value of the magnetic station
is also saved, however, it is marked as anomalous.
If there is no output signal from the magnetic sta-
tion, then the DC value is recorded as the measure-
ment result. The verified values stored in the geo-
magnetic database (4) are structured in the form
of response vectors and regressors and are used to
update and adjust the vectors of coefficients of the
DT models (5).

y1(9) v,
» 1 N
x(t) —
Yyl
" 2 [YZ’ Y37
l l lyz(t), Y3(D); wes Y ) o Y1
y1(t)
8 5
+ (0% ﬁ17 Bg,..., ﬁm |

B Fig. 4. Model of digital twin integration into the pro-
cesses of collection and registration of geomagnetic data:
1 — magnetic station; 2 — reference magnetic stations;
3 — digital twin of the magnetic station; 4 — data base;
5 — machine learning system

xi—xf <30 or
x; —x; | <3 —Z( xX; —X; —x) ) (10)
\/n_lil( )

where c is a standard deviation; x;* and x; are the
values of the digital twin and its physical prototype,
respectively, at the i-th moment of time ¢.

Figure 5 on the example of the KIL station
demonstrates an algorithm that explains the dia-
gram shown in Fig. 4.

Thus, the application of the proposed scheme
and algorithm in the case of the KIL station makes
it possible to recover 99.55% of the data for 2015,
while the MSE of 86.73% of the recovered values
does not exceed 12 nT. As follows from the algo-
rithm (see Fig. 5), the state of failure of the entire
local system for collecting and registering geomag-
netic data occurs with the simultaneous absence of
asignal at the output of the magnetic station and its
DT. For the KIL station, the calculated value of the
probability of such an event occurring is less than
0.0016%, which corresponds to eight missing val-
ues per year, which, in turn, can be restored using
linear interpolation methods.

Discussion of the results and prospects
for their application

As hasbeen shown, the introduction of magnetic
station DT into the processes of collecting and reg-
istering geomagnetic data due to the redundancy
effect can (at the data consumer level) significantly
increase the reliability and fault tolerance of indi-
vidual magnetometers, as well as reduce the labor
intensity of preprocessing of geomagnetic data, for
example, such as search and identification of outli-
ers in time series.

However, when implementing the approach, it
is necessary to take into account the limitations
of its effective application, which are determined,
first of all, by the spatial anisotropy of the GMF pa-
rameters. Thus, the MSE of the DT for each specific
case (magnetic station) will differ, depending on the
geographic location of this physical prototype, as
well as the number and distance of the surrounding
magnetic stations. At the same time, the general
methodology for selecting reference stations, syn-
thesis and optimization of regression models will
practically not change.

A perspective in the development of virtual mag-
netic stations is the integration of GMF satellite ob-
servation data (for example, SWARM, CHAMP mis-
sions, etc.) into the information environment of the
DT. It can be assumed that the implementation of
the approach, in addition to the aggregation of ad-
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B Fig.5. Algorithm of the process of geomagnetic data collecting and registering with the implementation of the digital

twin on the example of the KIL magnetic station

ditional data required for the calibration (settings
of models) of the DT of magnetic stations, can also
weaken a number of methodological limitations of
the effective use of the DTs, associated, for exam-
ple, with the absence of nearby magnetic stations.

Speaking about the prospects of using the DT of
magnetic stations, the following tasks should main-
ly be highlighted:

— reconstruction of geomagnetic data time se-
ries;

— automated search and identification of outli-
ers in geomagnetic data time series;

— collection of geomagnetic data in condi-
tions where the use of physical magnetic stations
is unacceptable or ineffective, for example, in the
immediate vicinity of objects that have a strong
noisy effect on magnetic sensors and primary
measuring transducers (trunk pipelines, power
lines, railway and oil and gas infrastructure fa-
cilities, etc.).
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— information support of the processes of direc-
tional drilling of deep wells in the Arctic zone of the
Russian Federation [23, 24].

Also, it should be noted here that DTs have the
potential to be used in problems of machine search
and identification of localized GMF disturbances,
for example, such as MPE (magnetic perturbation
events), which are isolated bursts of field inten-
sity with a duration of 515 min at night [25] and
can be responsible for intense bursts of geoinduced
currents in power lines [26]. The horizontal scale
of such disturbances is ~200—300 km, and they are
recorded, as a rule, at 1-2 stations of the network.
Thus, DTs are able to automate this process by iso-
lating disturbances that sharply differ from the
model values.

Conclusion

In this paper (using the KIL magnetic station as
an example), it is shown that the DTs of magnetic
stations built on the basis of LASSO regression are
capable of providing retrospective forecast and res-
toration of the X-component of the GMF vector in
the auroral zone with a mean square error from 11.5
(in 77.4% of cases) to 29 nT (in 99.6% of cases) de-
pending on the number of reference stations used.

Comparative analysis of wavelet spectrograms
of data from the magnetic station DT and its phys-
ical prototype in the frequency range with periods
of 2—12 min (Pi3 / Ps6 pulsations, Pcb waves, the
onset of substorms) showed that in the amplitude
region of the information signal there may be mi-
nor differences commensurate with modeling error,
however, the spatial localization of frequency pack-
ets remains practically unchanged.

In the absence of a physical prototype of the
magnetic station (the response vector of the train-

ing sample), the implementation of the DT is pos-
sible on the basis of spatial interpolation methods,
but here one should expect a slightly larger (com-
pared to the regression approach) modeling error.

The main factors limiting the effectiveness of
the proposed approach are the specifics of the ge-
ographic location of a particular physical proto-
type, as well as the number and distance of nearby
magnetic stations. It is possible to minimize the
influence of these factors by expanding the infor-
mation environment of the DT, for example, by ag-
gregating data from satellite observations of the
GMF.
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Beenenue: MarHuTHbIE CTAHIIAY SBJIAIOTCS OAHUM 13 OCHOBHBIX HHCTPYMEHTOB HAOIIOLEHIA F€OMAarHUTHOTO [I0JIs, OJHAKO IPOIYCKY
U aHOMAJINH BO BPEMEHHBIX PAJaX MeOMArHUTHBIX JAaHHBIX, HepeAko npeswrmaomue 30 % OT uncia 3aperncTPUPOBAHHBIX 3HAUEHUH,
HETaTUBHO OTParkaoTcd Ha d9()(eKTUBHOCTY Peasn3yeMoro IoAX0a U 3aTPYAHAIOT IPUMeHeHIe 9JIeMeHTOB MaTeMaTUUecKoro obecreue-
HUs, TPEOYIOIINX COOIIONEHUs YCIOBUA HEIPEPHIBHOCTY NHGOPMAMOHHOrO curHaia. Kpome aToro, 0OTCyTCTBYIOIEe 3HAUEHUS BHOCAT
JIOTIOJIHUTEILHYIO HEOIIPEIeJIEHHOCTE B 3a/lauaX KOMIIBIOTEPHOTO MOJIEINPOBAHUA AMHAMUKY IIPOCTPAHCTBEHHOT'O PACIIPeesIeHUA ITapa-
MeTpPOB reOMarHUTHBIX Bapuanuii. Ileas: paspaboraTb MeTOZOIOTHUIO MOBBIIMIEHUA d(PPEeKTUBHOCTY TeXHUUYECKUX CPEeACTB HAOIIOLeHU
TeOMarHUTHOrO 1oJiA. MeToa: co3jaHue U MHTerpanusa B IPOIecChl cOopa U IpeABapUTEIbHON 00pabOTKY reOMarHUTHBIX JAHHBIX IIPO-
01eMHO-OPMEHTUPOBAHHBIX IM(DPOBBIX JBOMHUKOB MAarHUTHBIX CTAHIINH, IIO3BOJIAIOIINX C U3BECTHOM TOYHOCTHIO UMUTHUPOBATH (DYHK IO~
HUPOBaHUE UX (PU3NUECKUX IPOTOTUIIOB. Pe3yasTarsl: Ha IpuMepe MaruuTHoi crannuu Kilpisjarvi (PuHIAHMA) TOKA3aHO, YTO UCIIOJIb-
30BaHMe NU(PPOBHIX ABOMHUKOB, HH(DOPMAIIMOHHYIO CPEAY KOTOPHIX COCTABJIAIOT FT€OMAarHUTHEIE JAHHBIE OKPECTHHIX CTAHIIUH, II03BOJISAET
IIPOBECTH BOCCTAHOBJIEHVE (PETPOCIEKTUBHBINM IIPOTHO3) ITapaMeTPOB FeOMarHUTHBIX BapUalluil CO CPeIHEKBAaAPATUUECKON OIMOKON B
aBpopasnbsHOit 30He 10 11,5 HTa. MHTerpanusa npobieMHO-OPUEeHTUPOBAHHEBIX ITU(POBBIX JBOMHNKOB MAarHUTHBIX CTAHIIUI B IIPOIIECCHI
cOopa u perucTparui reOMarHUTHHIX JaHHBIX CII0COOHA 00eCIeYnTh ABTOMATHYECKYIO NASHTU(DUKAIUIO U 3aMeIlleHIe OTCYTCTBYIOIINX 1
aHOMAaJbHBIX 3HAUEHUH, TIOBHIIIAA 3a cueT 3(hdheKTa pe3epBUPOBAHUA OTKA30yCTONUYNBOCTh MAaTHUTHOM CTAHITUY KaK 00 bEKTa-ICTOUHUKA
nauubix. Tak, HanpuMep, rudpoBoi gBoiHUK crannuu Kilpisjirvi peanusyer Boccranosierue 99,55 % rogoBoi nHMpOpMAINY, U3 HUX
86,73 % c omubKoii, He npeBbimaomiei 12 a#Tia. O6cyskaenne: 1o IpUYNHe IPOCTPAHCTBEHHOM aHU30TPOINY IIaPAMETPOB F€OMAaTrHIUTHOT'O
II0JIa OIIMOKa Ha BEIXOZe IU(POBOr0 JBOMHUKA JJIA KA'KJO0T0 KOHKPETHOTO cIydas OyAeT OTIINYAThCA B 3aBUCUMOCTH OT reoTrpauuecKoro
MeCTOIIOJIOKEHNA MAaTHUTHOY CTAHIINY, a TAKIKe UKCJa U YAJIeHHOCTH OKPECTHLIX MAarHUTHLIX cTaHnui. OfHaKO JaHHYIO IPobieMy BO3-
MOJKHO MUHUMUSUPOBATH, HTEIPUPYS B HHDOPMAIIMOHHYIO CPeAy Hu(POBOTO ABOMHNKA reOMAarHUTHEIE JaHHBIE CIIy THUKOBBIX HA0II0/e-
Huil. [IpakTHyecKas 3HAUMMOCTH: IPUMEHEHNE IPEJIOKEHHOI MEeTOJOJIOTUY IeJIaeT BO3MOKHBIMHI aBTOMAaTU3UPOBAHHYIO TUATHOCTUKY
BPEMEHHBIX PANOB MeOMAarHUTHBIX JAHHBIX Ha IIPeJMeT BBIOPOCOB M aHOMAJHWMH, a TAK)Ke BOCCTAHOBJIEHNE OTCYTCTBYIOIINX 3HAUEHUHN U
UAeHTU(DUKAIIAIO MeJIKOMACIITAOHBIX BOBMYII[E€HU.

KaroueBsie ciioBa — Iu(POBBIE ABONHUKN, BOCCTAHOBJIEHIE BDEMEHHBIX PANOB, CTATUCTUYECKUI aHAIN3, FTeOMarHUTHbIE JaHHbIE,
MarHUTHBIE CTAHITUN.

Ias umtuposanusa: Vorobev A. V., Pilipenko V. A., Vorobeva G. R., Khristodulo O. I. Development and application of problem-oriented
digital twins for magnetic observatories and variation stations. Hugopmayuornno-ynpasasouue cucmemot, 2021, Ne 2, c. 60-71.
doi:10.31799/1684-8853-2021-2-60-71

For citation: Vorobev A. V., Pilipenko V. A., Vorobeva G. R., Khristodulo O. I. Development and application of problem-oriented digital
twins for magnetic observatories and variation stations. Informatsionno-upravliaiushchie sistemy [Information and Control Systems],
2021, no. 2, pp. 60-71. doi:10.31799/1684-8853-2021-2-60-71
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XPOHUKA U UHOOPMALIUA

/

Mocksa
MaprT - HoAbpb 2021 r.

X Bcepoccuiickas HEWHO-TEXI—EH'-IECLKEF "W*LPG S HLWA

X BcepoccuMUCKasi ¢ MeXAyHapoOAHbIM yYyacTUeM
Hay4YHO-TeXHU4YecKas KoHchepeHLuus
«Mpobnembl pa3paboTKu NepcneKTUBHbIX
MUKPO- U HAaHO3NEKTPOHHbIX cuctem» — M3C-2021

Mapr—H0oa6ps 2021 r.

Koudepennua MIC aBisercsa KpyIHeNIeil KOH-
(depennueit B o6smactu CAIIP MUKPO3JIEKTPOHUKY
Ha TeppuTtopuu Poccun u crpan CHI.

dopmar nmpoBeaeHU
Omuaiig

OpranusaTopsi

WucTturyT npobyieM IPOEKTUPOBAHUSA B MUKPO-
anexkTponuke PAH (MIIIIM PAH)

Kopmopanus passutusa 3enenorpazna (KIIP)

Coopranusartop

MockoBckoe HayUYHO-TEXHUUECKOE OOII[eCTBO
paauoTexHUKH, 3aeKTpoHUKH 1 cBA3u (MHTOP3C)
uMm. A. C. ITomoBa

Yupegurean

Poccuiickas akageMua HayK

MuHuCcTEPCTBO HAYKU M BBICIIIETO 00pasoBaHUs
Poccuiickoit @enepariuu

Poccuiickuii poHI PyHIaMEHTaJIbHBIX HCCJIEN0-
BaHUH

IIpaBuTtenbcTBO T. MOCKBBI

IIpedexTypa 3emenorpaackoro AO r. MocKBbI

IOk HBIN enepanbHBIA YHUBEPCUTET

Hanpasaenus paGoTsr

TeopeTmyecKue acIeKThl IIPOEKTUPOBAHUA MUKPO-
¥ HaHOAJIEKTPOHHBIX cucteM (MIAC)

MeTonb! 1 cpeicTBa aBTOMAaTU3AIUN TPOEKTUPO-
BaHUA MUKDO- U HAHOJIEKTPOHHBIX CXEM U CHUCTEM
M3SC (CAIIP CBUC)

OubIT paspaboTKu IUMPOBBIX, aHAJIOTOBBIX,
mudPO-aHAJIOTOBBIX, PATUOTEXHUUYECKUX (DYHKIIVO-
HaJabHBIX 0J10K0B CBYIC

Ocob6ennoctu mpoektupoBanus CBUC niasa HaHo-
METPOBBIX TEXHOJIOTHUHA
CucreMbl Ha KpUCTAJIJIE IEPCIEKTUBHON POA

PaGouue a3bIKHU
Pycckuii u aurnuiickui

OpresHoc
VYuactue B koH(pepernuu MIC-2021 6ecniaTHoe.

IIy6mukanus TpyaoB

IIpunaTeie moKJIanbl OyAyT ONYyOJIMKOBAHBI Ha
web-caiiTe KOH(EPEeHIINN, a TaKyKe B UeThIPeX BbI-
IIyCKaX TPYZAOB KOH(pEepeHINU, KOTOpble OyayT m3-
IaBaTbhCA IO Mepe IOCTYILJIEHUs, PEIleH3UPOBaAHUA U
PeIaKIIMOHHOM IIOTOTOBKH.

C6opauk TpymoB Komdepennuu MOC BKIIOUEH
B Ilepeuerr BAK poccuiickux peleH3upyeMbIX Ha-
VUYHBIX JKYPHAJIOB, B KOTOPBIX MOJIXKHBI OBITH OIY-
OJIMKOBAaHBI OCHOBHBIE HAyUYHBIE PE3yJIbTATHI TUC-
cepTanuii HA COMCKaHIe YUeHBLIX CTeleHeil JoOKTopa
U KaHAUAaTa HAyK.

Kak u B 2020 roxny, OyayT IIpoBeieHbI KOHKYPCHI
Ha JIyYIlIe JOKJIAJbI C IPU3aMU IAJid I00emTe e,

KouTpoasHbie CpOKHN
IIpuem noxnanoB — ¢ 01 mapra mmo 01 asrycra 2021 1.

JomonHuTeabsHasE HHPOPMALUA U CIIPABKU

124365 MockBa, 3exaenorpajn, CoBerckas yi.,
I. 3, UucTuTyT IpobJieM IPOEKTUPOBAHUA B MUKPO-
anekTponuke PAH

IIpeacraBurens Oprromurera Xoxoru Jles Couio-
MOHOBUY

9. agpec: khod@ippm.ru

Caiir: http://www.mes-conference.ru
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CBEAEHUA Ob ABTOPAX

AJIEKCAIIINH
Anexcanap
CepreeBuu

MaructpasnT (akysnbreTa IIpU-
KJIaJHOH MaTeMaTuKy U nHGopMa-
tuku HoBocubupckoro rocyzmap-
CTBEHHOT'O TEXHUIYECKOT0 YHUBED-
curera.

B 2019 roay oxomums 6aKasaBpuaT
HoBocubupckoro rocyzapcTBeHHo-
I'0 TEXHIYECKOTO YHUBEPCUTETA O
cnenuanbHocTy «IIpukiagnas ma-
TeMaTHKa U UHPOpMaTUKa».
06acTh HAYYHBIX WHTEPECOB —
MeTO[ I'PAaHUYHBIX AJIEMEHTOB, Me-
TOJ{ KOHEUHBIX DJIEMEHTOB.

1. ajgpec:
aleksashin.a.s@yandex.ru

BO
b1k XoaHr

IIpemogaBarens dakynabrera WH-
dopmaruonHBIX TexHOMOTHH [la-
HAHICKOr0 YHUBEPCUTETA HAYKHU U
TeXHOJIOTHH, [laHaHrCKUi yHUBED-
curet, [lananr, BeeTHAM.

B 2006 roxy okorunt [laHaHICKUit
VHUBEPCUTET HAYKHU U TEXHOJOT Ui
mo crernuagpHocT «MHbOPMaIy-
OHHBIE TEXHOJIOTHIL».

B 2019 rogy samwurun amccepra-
U0 HA COMCKAHNE YUEHOU CTere-
HU KaHIWATa TeXHUYECKUX HAYK
B JlaHAHT'CKOM YHUBEPCHUTETE.
fBisiercss aBTOPOM JeCATH HAyy-
HBIX IyOJUKAIWi.

O61acTh HAYYHBIX WHTEPECOB —
00paboTka n300pasKeHuit.

AI1. ajgpec:
hoangvd.it@dut.udn.vn

BO3HIOK
Exarepuna
Cepreesna

AcnupasT kadexpsl MPHKJIALHON
MaTeMaTUKY, MJIAAIINH HAyIHBIH
COTPYAHUK HAYYHO-UCCIe0Ba-
TeJILCKON JIa00paTOPUU MOJAEIUPO-
BaHUA ¥ 00pabOTKU JAaHHBIX HAy-
KOeMKuX TexHosoruit HoBocubup-
CKOI'0 TOCYAapCTBEHHOI0 TeXHUYe-
CKOI'0 YHUBEPCUTETA.

B 2017 roxy oxomumia HoBocubup-
CKUIl TOCYJapCTBEHHBIN TeXHUYe-
CKUIl YHUBEPCUTET IO CIEIUAJh-
Hoctu «IIpuKyiagHas MareMaTuKa
U nHPOPMATUKAY.

06s1acTh HAYYHBIX WMHTEPECOB —
METOJ] KOHEUHBIX DJIEMEHTOB.

9. agpec: elfy@ami.nstu.ru

BOPOBBEB
Anpgpei
Bragumuposuu

HouenT xKadenpsl reouHbopMaIiy-
OHHBIX CHCTEM Y(PHMCKOTO Trocy-
JapCTBEHHOI0 aBUAI[MOHHOTO TeX-
HUYECKOT0 YHUBEPCUTETA.

B 2006 roay 0KOHYMII MarucTpary-
py YpuMCKOro rocyzapcTBEHHOTO
aBHAIIMIOHHOTO TeXHUYECKOT0 YHU-
BepCUTETa 10  CIEIWAJBHOCTH
«OJIEKTPOHUKA ¥ MUKPOIJIEKTPO-
HUKa».

B 2009 roxgy samuTmi aumccepTa-
I[MI0 HA COMCKAHNE yUYeHOH cTere-
HU KaHANATA TEXHUYECKUX HAYK.
fAsnsercs apropom 6Gosee 100 Ha-
VUHBIX OYOJUKAUWil W YeThIPeX
MaTeHTOB Ha N300PEeTeHN .
Ob6sacTh HAyYHBIX HHTEPECOB —
o0pa0oTKa W aHAJIW3 IPOCTPaH-
CTBEHHBIX JAHHBIX, METOABI Ma-
IMUHHOTO 00yUeHus, reonHpopma-
I[MOHHBIE CUCTEMBI U TEXHOJIOTHHU.
9. agpec: geomagnet@list.ru

BOPOBBEBA
I'yasHapa
PaBuaesna

IlomeHT Kadeapsl BBIYNCIUTENH
HOIl MaTeMaTUKU U KUOEPHETUKM

Ydumcroro TOCYZapCTBEHHOTO
aBUAIMOHHOTO TEXHUIECKOr0 YHU-
BepcHUTeTa.

B 2005 roxy oxonunia Yhumckuit
TOCYJaPCTBEHHBI aBUAIMOHHBIHN
TeXHUYIECKHUI YHUBEPCUTET IIO CIie-
[UAJBHOCTH «ABTOMATH3UPOBAH-
HbIE CHCTEMBI 00paboTKM WH(EOP-
MAIVH U YIPABICHU».

B 2008 roxy samuTuia auccepra-
[UI0 HA COMCKAHWE YUYEHOH crere-
HU KaHAUJATA TEXHUUECKUX HAYK.
SIBnsercsa aBTopom Gosee 100 na-
VUHBIX MYOIUKAIHIA U JBYX ATEH-
TOB Ha N300peTeHN.

06acTh HAYYHBIX WHTEPECOB —
Be0-TeXHOJIOTUH, BeO-TIIporpam-
MUPOBaHUEe, IPOrPAMMHAS WHIKe-
Hepus.

1. agpec:
gulnara.vorobeva@gmail.com

JYRKHNH
Muxaumu
Anpgpeesnu

ApxurekTop-paspaborunx 000
«Cymo», OIeHT pakTuKu Kades-
PBl KOMIBIOTEPHBIX TEXHOJOTHI
Vuusepcurera WTMO, Canxr-
IleTepOypr.

B 2009 roxy oxonuma CaHKT-
IlerepOyprekuii rocynapcTBeHHbII
VHUBEPCUTET UHPOPMAIMOHHBIX
TEXHOJIOTUHN, MEXAHUKU U ONTUKI
mo creruajgbHocT «IIpUKJIagHAS
MaTeMaTuKa 1 nHPOPMATUKA».

B 2014 ropgy samuTui auccepra-
M0 HA COMCKAHME YYEHOU CTere-
HU KaHAUJaTa TEXHUYECKUX HAYK.
SBnserca aBropom 13 HayYHBIX
myOIuKAIAN.

061acTh HAYYHBIX WHTEPECOB —
BepuUPUKALIIA IIPOrPAMMHOTO 00e-
CIIeUeHUs, CTATUYECKMe aHaJM3a-
TOPBI KOJA.

9I1. ajgpec:

lukinma@gmail.com
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MHUXAMNJEHKO MarucTpasT Kadeapsl KOMIIBIO- MOJIOBAH HayuHeIit COTPYIHUK J1a60paTOPHH
Kpucruna TEPHBIX TEXHOJIOrU# YHUBepCUTe- I Murpmit Kubep6e30macHOCT! 1 TIOCTKBAHTO-
HropeBHa ra UTMO, Caukt-Iletep6ypr. Hukonaesua BbIXx kpuntocucreM CaskT-Ilerep-

B 2020 roxy oxkonuna 6axkaiaBpu-
ar Yuusepcutera 1TMO mo cneriu-
anpHOCcTH «IIpHKIanHas mMaTema-
THKA 1 HHPOPMATUKA».

06acTb HAyYHBIX WHTEPECOB —
MeTOIbI AEeKOMIUJIAINY, CTaTHye-
CKUIl aHAJIN3.

911, ajgpec:
Kristina.Mihajlenko@gmail.com

OyPrcKoro MHCTUTYTA MH(OPMATH-
Ku u apromarusanuu PAH.

B 2009 rogy oxomum Jlenusrpaza-
CKU BIIEKTPOTEXHUUECKUN UHCTH-
ryT um. B. 1. Viasauosa (Jlexnuua)
mo creruaigbHocTH «KoMmbroTep-
Has 6e30I1aCHOCTD.

B 2012 roxy sammTui amccepTa-
M0 HA COMCKAHME YUEHOU CTere-
HU KaHAUaTa TEXHUIECKUX HAYK.
fABnsiercss aBTOpoM 79 HAYUHBIX
MyOJIUKAIAN U IIIeCTH TaTeHTOB Ha
1300peTeHus.

O6sacTh HAYYHBIX HHTEPECOB —
nHbOPMAIOHHAA (e30IIacHOCTb,
sarmura WHQOPMAIMK, KPUITOCH-
CTEMBI C OTKPHITHIM KJIIOUOM, TTOCT-
KBaHTOBasA Kpunrorpadus, KOHeY-
Hble HEKOMMYTaTUBHbIE aJITe€0PBL.
9. agpec: mdn.spectr@mail.ru

MOJI0OBAH
Huxomait
AnpgpeeBuu

IIpodeccop, 3aBegyromuit HayuYHO-
HCCJIe0BATEILCKUM OTHEJIOM IIPO-
6uem wH(OpPMAIMOHHOM Gesomac-
HOCTHU Cankr-IlerepOypreckoro
MHCTUTYTa WH(OPMATUKU U aBTO-
marusaruu PAH, 3saciykeHHBII
usobperarens PD.

B 1975 ropy oxonumn Kurmuzes-
CKUI IIOJIUTeXHUUECKUN HHCTUTYT
mo crenuanbHocTH «IlosynpoBoa-
HUKOBBIE TPUOOPEI».

B 2001 rozy samurtun xuccepra-
M0 HA COMCKAHWE YUEHOU CTele-
HU JIOKTOPA TeXHUYECKUX HAYK.
fBnsercsa aBropom Gosee 250 Ha-
yuHBIX nyOaukanuit u 60 maren-
TOB HA U300PETEHU .

O6acTh HAYYHBIX WMHTEPECOB —
uH(pOpManoOHHAs 0e30I1acHOCTbD,
Kpunrorpadus, 3JIEKTPOHHA A
nudpoBas  MOAINCH,  OJOUHBIE
mu@psl.

9. agpec: nmold@mail.ru

HI'YEH
Txaup Konr

OKCIIEpT JemapTaMeHTa HayKW,
TEXHOJIOTUH ¥ MeXKJyHApPOLHOTO
COTPYAHUYECTBA IlaHaHrCKOTO
VHUBEPCUTETA HAYKU ¥ TEXHOJO-
ruii, JlaHAHTCKUN yHUBEPCUTET,
Ianaur, BeeTHAaM.

B 2013 rogy oKOHYMI MarucTpary-
py Yuusepcurera Oaus I13e, Taii-
BaHb, 10 crenuanbrEocTy «Marmn-
HOCTDOEHUE».

061acTh HAYYHBIX WHTEPECOB —
00paboTKa N300paKeHNA.

9. agpec: nthcongbk@dut.udn.vn

ITACTYIIOK
Hrops
AHatoaseBuu

Tonent xKabenpbl HHOOKOMMYHU-
KanuoHHbIX  cucteM  CaHKT-
ITeTepGyprckoro rocyapCTBeHHO-
o0 YHUBEPCUTETA a3POKOCMUYE-
CKOT'0 IPHOOPOCTPOEHNUA.

B 2014 romy oxomumsn CaHKT-
IlerepOyprexuii rocymapcTBeHHBIH
YHUBEPCUTET a3POKOCMHUUYECKOTO
mpuGOPOCTPOEHNUS TI0 CIIEI[AATBHO-
cru «KoMmmiekcHas 3amuTa 00HeK-
TOB NH()OPMATU3AL U ».

B 2018 rogy samuTui auccepra-
[UI0 HA COMCKAHWE YUYEHOH crere-
HU KaHU/aTa TEXHUIECKUX HAYK.
SIBnsiercs aBropoM 24 HAyUHBIX
nyOIUMKAIUT.

ObsacTb HAyYHBIX WHTEPECOB —
MaTeMaTHYecKasd ONTUMU3AIUA,
0ecrpoBOSHbIE CETH, AJTOPUTMbI
pacipe/iesieHus PecypcoB, TeOpUus
BEPOATHOCTY, MMHUTAIMOHHOE MO-
IleJIMPOBaHIe.

A1. agpec: i.pastushok@vu.spb.ru

IINJIUITEHKO
Bauecaas
AnaroasreBuu

TnaBHBI HAyYHBIA COTPYLHUK
Teodusuueckoro menrpa PAH, 3a-
BeAyIoIIMit Jaboparopuei (GUSUKI
OKOJI03eMHOr0 IpocTpaHcTBa WH-
cruryra (usukun Semsuu PAH,
Mocxkga.

B 1973 roxy oxonum MocKoBCKmit
rOCYJAPCTBEHHBIA  YHUBEPCUTET
um. M. B. JlomonocoBa o crenu-
anpHOCTU «DPUBUK».

B 2000 roxgy samuTmi amccepTa-
M0 HA COMCKAHMe YUEHO! CcTere-
HU JOKTOpa (PUBMKO-MaTeMaTude-
CKUX HayK.

SfBnserca aBropom 6Gosee 300 Ha-
VUHBIX ITyOJUKAIIVI.

061acTh HAYYHBIX WHTEPECOB —
KOoCMHUYecKasa (pusmKa, reOMarHuT-
Hble Bapuallui, KOCMUYECKas II0-
Tozia, COJIHEUHO-3eMHAa A (pu3uKa.
9. agpec: pilipenko_va@mail.ru
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POAR IIpodeccop Kadeaps! IPHKIALHOR CHUBAK AcnupasT Kadepsl IPUKIATHONL

Muxauia MareMaTuKH, Aupextop Wuceruty- Cepreii MaTeMaTHKX ¥ HUHDOPMATHUKH,

) Ta AUCTaHIMOHHOrOo 00yuenus Ho- MJIAJIINI  HAYYHBI COTPYLHUK
MMAaHYUJIOBUY Anpgpeesnu

BOCHOMPCKOTO TOCYAApPCTBEHHOTO
TeXHUYECKOr0 YHUBEPCUTETA.

B 1989 roxy oxomumns HoBocubup-
CKUI BJIEKTPOTEX HUUECKUI UHCTH-
TYT [0 CIIeNUAIBHOCTH «VIHKeHep-
MaTeMAaThK».

B 2008 roxy samuTui guccepra-
U0 HA COMCKAaHWE YUEHOH CTele-
HU JIOKTOPA TEXHUYECKUX HAYK.
fBnsercsa aBropom Gosee 100 Ha-
YYHBIX TyOIUKAIU.

06acTb HAYYHBIX WHTEPECOB —
MaTeMaTUYeCKOe MOJeJNPOBAHLE
9JIEKTPOMATHUTHBIX IIPOIECCOB.
A1. agpec: royak@corp.nstu.ru

HAYYHO-00pPa30BaTEILHOTO IEHTPA
«MogenupoBaHue  HAYKOEMKHUX
rexHomoruit» HoBocubupcKoro ro-
CyZapCTBEHHOTO TeXHUYIECKOr0
VHUBEPCUTETA.

B 2013 rogy oKOHYMI MarucTpary-
py HoBocubupcKkoro rocygapctses-
HOTO TEXHWYECKOTO YHUBEPCHUTETA
mo creruajgbHoCTH «IIpUKIagHAS
MaTeMaTuKa 1 HHPOPMATUKA».
SlBiseTCs aBTOPOM UeThIpEX Hayd-
HBIX IyOJUKAIWi.

O61acTh HAYYHBIX WHTEPECOB —
MeTOo[] KOHEUHBIX DHJIEMEHTOB, Me-
TOJ TPAHUYHBIX JJIEMEHTOB.

9. agpec: siwakserg@yandex.ru

CTAHKEBHY

Anpgpeii

Cepreesuu

Honent daryabrera uHMOPMAIT-
OHHBIX T€XHOJIOTHI ¥ IPOrpaMMu-
poBaHus Yuusepcurera MWNTMO,
CaukT-Ilerep6ypr.

B 2004 romy oxomuma CaHKT-
IleTepOyprekuil rocynapcTBeHHBIH
VHUBEPCUTET HHPOPMAIMOHHBIX
TEXHOJIOTUH, MEXAHUKU U OUTUKY
mo crmenuasibHOCTH «IIpuKIagHAA
MaTeMaTHUKa U HHPOPMATHKAa».

B 2011 romy samuruia muccepra-
I[MI0 HA COMCKAHWE YUeHOH creme-
HU KaH/UJIaTa TEXHUIECKUX HAYK.
SfABnserca aBropom 13 HayuHBIX
nyOIMKaIUT.

061acTh HAYYHBIX WHTEPECOB —
(opmasnbHBle  ABBIKK, TeOpUd
CJIO3KHOCTH, QJITOPUTMBI ¥ CTPYK-
TYPbI JAHHBIX.

9. axpec: stankev@itmo.ru

CTYIIAKOB
HNapa
MuxaiiaoBuu

HouenT KadeAps! IPUKJIATHON Ma-
rematuku HoOBOCHGHPCKOrO rocy-
IapCTBEHHOTO TEeXHUUYECKOTO YHU-
BepcuTeTa.

B 2009 roay oKOHYMII MarucTpary-
py HoBocubupcKkoro rocygapctTses-
HOTO TeXHUYECKOTO YHUBEPCHUTETA
mo creruagbHocT «IIpuraanHas
MaTeMaTuKa 1 MH)OPMATUKA».

B 2016 romy samwuTui amccepra-
IMI0 HA COMCKAHWE YUYEHON CTere-
HU KaHIUJATa TeXHUUECKUX HAYK.
SBnaerca aBropom 6osee 30 HAyU-
HBIX TyOJIUKAIIWiA.

O6sacTh HAyYHBIX HHTEPECOB —
MEeTO/J KOHEUYHBIX 3JIEMEHTOB, Me-
TOA 'PAHUYHBIX 3JIEMEHTOB, MaTe-
MATHYECKOe MOJIEIMPOBAHNE DJIIEK-
TPOMATHUTHBIX MOJIEH.

9. agpec: istupakov@gmail.com

TCUJIUERA

Kupuaku
Jdumurpoc

AccucrenT Kadenpsl SKOHOMUKI
Vuusepcurera ®Peccanuu, mpermo-
naBarenb IIIKONBI COIIMANBHBIX
HayK ['peYecKoro OTKPHITOTO yHU-
BepcureTa, Bosoc, I'pernus.

B 1995 roagy oxoHumia mMaTeMaTy-
yecKuil (DaKysapTeT YHHMBEpPCHUTETA
Apucrorens B Canonukax, I'perus.
B 1999 roxy sammuTuia guccepra-
I[UI0 HA COMCKAHWE YUeHOH crere-
uu (PhD) mo npukiagHoit marema-
THKE.

fIBnsiercs aBropoM 68 HayUHBIX
nyOIuKaIUn.

O6s1acTh HAYyYHBIX HHTEPECOB —
BBIYNCJIATENbHAA MaTeMaTHKa,
CUMBOJINUECKUE BBIUNCIEHUS, CHU-
CTeMbI KOMIIBIOTEPHOH asre0psl,
TEOpHSA U MeTOAbl ONTHMU3AILUIL,
HEBBIIYKJBIA HErTaJKUN aHaIus,
XeMU-BapHallOHHbIE HEPABEHCTBA,
BU3yaIU3alus [AaHHBIX, TEOPUS
rpadoB, SKOHOMUYECKUE CETH U JIP.
9. agpec: ktsilika@teilar.gr

DAM
Kour Txanr

IIpenonaBarenb (akyabreTa UH-
(opmaruoHHBIX TexHoMorHi [a-
HAHTCKOT'0 YHUBEPCUTETA HAYKU U
TexHosoruii, [lananr, BrerHam.

B 2013 roay oxomumn Tymbckuit
roCyJapCTBEHHBI YHUBEPCUTET IO
cmenuanbHOCTH  «BhIumcanTenns-
HbIe MAIIUHBI, KOMILJIEKChI, CHCTE-
MBI 7 CETH».

B 2016 romy sammurui awmccepra-
I[MI0 Ha COMCKAHNE yUeHOH cTere-
HU KaHJWUJATa TeXHUYECKUX HAYK
B TymbcKOM ToCyZapCTBEHHOM
VHUBEpCHUTETE.

SfBnserca aBropom 20 HayYHBIX
ny0IKAIAN.

O6acTh HAyYHBIX WHTEPECOB —
00paboTKa 1300paKeHnil, MalluH-
HOe 00yueHe, HayKa O JaHHbIX.
9. agpec: pcthang@dut.udn.vn
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XPUCTOOAYJIO BaBenyomas Kaenpoil TeomH- JAH IIpenogaBarens (GaKyIbTeTa CTa-
Oabsra (opmannOHHEIX cucTeM Y(OUMCKO- Txu Txy Txao TUCTUKU U MHPOPMATUKU IKOHO-
I/IropeBHa T'0 rOCyapCTBEHHOI'0 aBUAIIOHHO- MHUUYECKOTo yHuBepcuTera, [a-

I'0 TeXHUYECKOT0 YHUBEPCUTETA.
B 1991 roxy oxornunia Ypumcruit
rOCyapCTBEHHBIA aBUAIMOHHBIH
TeXHUYIECKHUH YHUBEPCUTET IIO CIie-
IUAJBHOCTH «ABTOMATH3AIUA U
MexXaHU3aIUs IPOIEeCCOB 00paboT-
KU ¥ BBIIAYX HHOOPMAILIALL».

B 2012 rogy samuruia auccepra-
IUI0 HA COMCKAHWE YUEHOH crere-
HU JOKTOPA TEXHUIECKHUX HAYK.
fBnsiercss aBropom Gosee 100 Ha-
YYHBIX TyOJIUKAIII.

061acTh HAYYHBIX WMHTEPECOB —
00paboTKa ¥ XpaHEeHWe IIPOCTPaH-
CTBEHHBIX TAHHBIX.

A1 agpec: o-hristodulo@mail.ru

STHKOBCKHI
Huxura
AnpgpeeBuu

MarucrpanT kKadeapbr uH(OpMa-
nMoHHOM GesomacHocTn CaHKT-
IleTepGyprekoro rocyfapCTBEHHO-
IO YHHBEPCHTETA adPOKOCMIYe-
CKOro IpUOOPOCTPOCHU .
SIBisieTCA aBTOPOM UeThIpeX Hayd-
HBIX ITyOJUKaUi,

O6acTh HAYYHBIX WHTEPECOB —
MareMaTHuecKas ~ONTHMU3ALU,
0eCIIPOBO/IHBIE CETH, AJTOPUTMBI
pacmpesiesieHUs PECYPCOB, TEOPUs
BEPOATHOCTEH, UMUTAIIIOHHOE MO-
JIeJINPOBAHIE.

9. agpec: yannik98@yandex.ru

HaHTCKUH yHuBepcutet, [laHawr,
Brernawm.

B 2018 rogy oxonumia marmcrpa-
Typy TyJIBCKOr0 rocyapcTBEHHOTO
VHUBEPCUTETA ITI0 CIIENUAJBHOCTH
IIpuknasHas MareMaTHKa U WH-
(opmatukar.

SIBnsercs aBTOPOM JeCcATH Hayy-
HBIX IYOJUKALWi.

O6acTh HayYHBIX WHTEPECOB —
o0paboTKa n300paKeHnil, MalluH-
HOe 00y UeHue.

9. agpec: thaotran@due.udn.vn
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