Расширение гипотезы Райзера на двуциклические структуры и разрешимость матриц Адамара орнаментом в виде бицикла с двойной каймой
Аннотация
Цель: расширить границу предельных порядков гипотезы Райзера с циклических на бициклические квазиортогональные матрицы с двумя значениями элементов (уровней), исследовать разрешимость бициклических структур с одной и двумя каймами на известные типы ортогональных по столбцам (строкам) матриц. Результаты: показано, что ортогональные вещественные бициклы Эйлера с уровнями а = 1, -b, где b = t/t+√2t, существуют для всех значений n = 4t-2 и с добавлением каймы переходят через промежуточную стадию вещественных матриц Мерсенна в целочисленные матрицы Адамара, определяя тем самым структуру матриц минимальной сложности, разрешимую для всех возможных для них порядков. Иными словами, гипотеза Адамара (хорошо известная своей недоказуемостью некомбинаторными методами) доказана при исследовании закономерностей «матричных переходов» от вещественных (не ограниченных запретом иметь иррациональные элементы) типов матриц к целочисленным матрицам Адамара с элементами 1, -1. Представлено родство матриц максимума детерминанта порядков n = 4t-2 ортогональным бициклам с тем существенным отличием от матриц Эйлера, что их бициклическая структура так же, как бициклическая структура матриц Адамара, разрешима на отведенных им порядках не всегда. Произведены оценки границ симметрии различных семейств бициклических матриц максимального детерминанта, включая матрицы Адамара. Практическая значимость: алгоритмы нахождения бициклических матриц использованы при построении поискового программного комплекса. Субоптимальные по детерминанту матрицы составляют основу фильтров Эйлера и Мерсенна, применяемых для сжатия и маскирования изображений.Опубликован
20-02-2017
Как цитировать
Балонин, Н. А., & Сергеев, М. Б. (2017). Расширение гипотезы Райзера на двуциклические структуры и разрешимость матриц Адамара орнаментом в виде бицикла с двойной каймой. Информационно-управляющие системы, (1), 2-10. https://doi.org/10.15217/issn1684-8853.2017.1.2
Выпуск
Раздел
Теоретическая и прикладная математика